Michael Matzer ♥ BigData-Insider

Michael Matzer

Michael Matzer arbeitet als Journalist, Übersetzer, Rezensent und Buchautor und lebt in der Nähe von Stuttgart. Seine Themen sind u.a. IT-Security, Big Data, Unternehmenssoftware, E-Commerce und HPC.

Artikel des Autors

Ein vereinfachtes Schema des Aufbaus der Architektur von LLM Mesh (Bild: Dataiku)
Skalierung, Orchestrierung und Governance für KI

Dataiku stellt LLM-Mesh-Erweiterung vor

Dataiku, der französische Anbieter einer kollaborativen Data-Science- und KI-Plattform, hat seine LLM-Mesh-Erweiterung vorgestellt. Sie soll die wahlfreie Nutzung skalierbarer LLMs der generativen KI erlauben und durch Governance absichern. Als Partner unterstützen unter anderem Snowflake, Pinecone, AI21 sowie Nvida LLM Mesh. Maximilian Harms, Principal AI Transformation Advisory bei Dataiku, erläutert das neue Angebot.

Weiterlesen
Ab sofort steht das E-Book „Datenbank-Migration“ kostenlos zum Download bereit. (Bild: Vogel IT-Medien)
E-Book von BigData-Insider

Datenbank-Migration

Viele Unternehmen wünschen sich derzeit eine zügige, kosteneffiziente Migration ihrer IT-Architektur, so auch ihrer Datenbank. Viele haben mehrere Datenbanksysteme, die unterschiedliche Aufgaben bewältigen und die konsolidiert werden können, um Lizenzgebühren zu sparen.

Weiterlesen
Ab sofort steht das E-Book „Big Data Analytics in der Finanzbranche“ kostenlos zum Download bereit. (Bild: Vogel IT-Medien)
E-Book von BigData-Insider

Big Data Analytics in der Finanzbranche

Die Finanzindustrie befindet sich derzeit in einem tief greifenden Umbruch und Big Data spielen dabei eine wichtige Rolle. Big Data sind per Definition sehr umfangreich, unvorhersagbar, heterogen und größtenteils unstrukturiert. Waren die meisten bankinternen Daten früher intern und aus strukturierten Transaktionen erzeugt worden, so ist heute eher das Gegenteil der Fall: Die meisten Daten kommen von außen, haben ein großes Volumen und treffen als Datenströme ein.

Weiterlesen
In diesem Dashboard kann der Summetix-Nutzer einen Suchbegriff in der gewählten Sprache (EN) eingeben. (Bild: Summetix)
Summetix

Mit Argument Mining Fake News und mehr entdecken

Mit Argument Mining und großen Sprachmodellen aus Deep Learning will das deutsche Start-up Summetix, das an der TU Darmstadt entstand, verstecktes Wissen im Kundenfeedback identifizieren, gruppieren und sogar monetär bewerten. Anwendungsbereiche sind der Kundenservice, Trendsuche, Wissensauswertung und Produktentwicklung. Summetix lässt sich mit ChatGPT-4 integrieren.

Weiterlesen
Das Splunk Edge Hub ist ein Hardwaregerät, das Daten von Maschinen und Edge-Geräten  sammelt, auswertet und zur Predictive Maintenance verwendet. (Bild: Splunk/Matzer)
Nachbericht Splunk .conf23

Splunk bringt KI-Plattform und ein Edge Hub

Auf seiner jährlichen Anwenderkonferenz .conf23 hat der Security- und Observability-Spezialist Splunk erstmals ein Hardwaregerät für Operational Technology (OT) vorgestellt: Edge Hub. Eine zweite Neuheit ist Splunk AI, ein mehrere Module umfassendes Framework für die Anwendung von KI- und Machine-Learning-Modellen. Als Kosten sparend dürfte sich eine engere Integration mit AWS S3 erweisen.

Weiterlesen
Hardy Gröger, IBM Distinguished Engineer und Technical Lead Data & AI für die DACH-Region (Bild: IBM)
watsonx

IBM macht Generative KI für Unternehmen verfügbar

Die IBM hat kürzlich ihre neue KI- und Datenplattform watsonx allgemein verfügbar gemacht. Das KI-Entwicklungsstudio watsonx.ai ist ebenso erhältlich wie die Datenplattform watsonx.data. Das dritte Modul, watsonx.governance, soll im November folgen. Watsonx sei auf die Anforderungen von Unternehmen ausgerichtet und liefere ihnen verschiedene vortrainierte Foundation-Modelle, erklärt IBMs KI-Experte Hardy Gröger im Gespräch.

Weiterlesen
President und CEO Jim Heppelmann stellte in Boston vor über 10.000 Besuchern sein Konzept des modellbasierten Digital Thread für IIOT vor. (Bild: PTC)
Nachbericht PTC LiveWorx 2023

PTC komplettiert IIOT-Konzept des Digital Thread

Das Konzept des Digital Thread im Industrial Internet of Things (IIoT) ist nicht neu, denn es verbindet alle Stationen und Phasen eines Produktzyklus vom Design bis zur Produktion. Aber es umzusetzen, ist nicht einfach, denn es gibt Schnittstellen zu überwinden. PTC hat den Digital Thread um Service Management und Nachhaltigkeit erweitert. Aus dem „Faden“ ist ein unendlicher Lebenszyklus geworden.

Weiterlesen
Ab sofort steht das E-Book „Big Data Analytics für KMU“ kostenlos zum Download bereit.  (Bild: Vogel IT-Medien)
E-Book von BigData-Insider

Big Data Analytics für den Mittelstand

Viele kleine und mittelständische Unternehmen (KMU) stehen unter großem Druck, innovativ zu sein, obwohl ihnen die Kosten für Energie, Personal und IT-Upgrades schier über den Kopf wachsen. Da erscheint es nahezu verwegen, aus Big Data auch noch Erkenntnisse gewinnen zu wollen. Aber gerade die unstrukturierten Daten, die heute einen Großteil der Datenflut ausmachen, bieten die Chance, innovativ zu sein und wertvolle Geschäftserkenntnisse zu gewinnen.

Weiterlesen
Eine schematische Darstellung des Frameworks, das NeMo Guardrails bildet. (Bild: Nvidia)
NeMo Guardrails

Nvidia bringt Richtlinien-Toolkit für generative KI

Nvidia hat mit NeMo Guardrails ein Open Source Toolkit vorgestellt, mit dem jedes Large Language Model (LLM) – wie etwa ChatGPT oder Nvidia NeMo – mit einer zusätzlichen „Schutzschicht“ versehen werden kann. Diese Schutzschicht kann jeder Nutzer dazu verwenden, die Interaktion mit einem LLM und die Ergebnisse eines LLMs mithilfe von Regeln zu programmieren, die in Python geschrieben sind.

Weiterlesen
Ministerpräsident Winfried Kretschmann eröffnet das Q.AX.  (Bild: © FraunhoferIAO| Foto:Ludmilla Parsyak)
In Ehningen bei Stuttgart

Quantum & AI Experience Center eröffnet

Die IBM hat an ihrem Standort Ehningen bei Stuttgart das „Quantum & AI Experience Center“ (Q.AX) eröffnet. Es sei ein weiterer Baustein auf dem Weg zu einem „lokalen und landesweiten Campus-Ökosystem“, wie Vertreter aus Politik, Wirtschaft und Wissenschaft zum Ausdruck brachten. In einem Demoraum waren Experimente zum Quantencomputing zu bestaunen.

Weiterlesen
SAP Datasphere läuft auf der SAP Business Technology Platform BTP. (Bild: SAP)
SAP

SAP stellt übergreifende Datenintegrationsplattform Datasphere vor

SAP stellt SAP Datasphere zur Vereinfachung von Datenlandschaften vor und kündigt Partnerschaften mit Collibra, Confluent, Databricks und DataRobot an. Mit der Lösung SAP Datasphere stellen die Walldorfer eine Datenintegrationsplattform vor, die zahlreichen Zwecken dient. Zunächst soll die Funktion des Datenmanagements dafür sorgen, dass Nutzer die richtigen Daten zur richtigen Zeit am richtigen Ort finden, was insbesondere bei langen Lieferketten nicht ganz einfach ist.

Weiterlesen
Technologietrends 2023 (Bild: Capgemini)
Capgemini-Studie

Zahlreiche Hürden bei der effektiven Datenauswertung

Capgemini hat die Ergebnisse der IT-Trends-Studie 2023 veröffentlicht. Demnach steht nach wie vor rund die Hälfte aller Daten von Unternehmen und Behörden nicht über die gesamte Organisation hinweg zur Verfügung. Das erschwert beispielsweise die Ermittlung von Emissionen oder den Einsatz intelligenter Technologien. Gleichzeitig steigt die Bedeutung der IT für den Klimaschutz.

Weiterlesen
Cassandra Enterprise umfasst zahlreiche Leistungsmerkmale, die für Unternehmensnutzer wichtig sind. (Datastax)
NoSQL

NoSQL-Datenbanken im Vergleich

NoSQL-Datenbanken wurden aus der Notwendigkeit heraus entwickelt, große, unterschiedliche Mengen von Dimensionen wie Raum, Zeit und Lokation auf möglichst effiziente Weise zu speichern und zu verarbeiten. Mittlerweile sind sie die unabdingbare Alternative zu relationalen SQL-basierten Datenbanken. Doch nicht jede NoSQL-Datenbank eignet sich für jeden Zweck. Tatsächlich sind die meisten sogar recht spezialisiert.

Weiterlesen
Messpunkte und deren Abstand von einer nach der Methode der kleinsten Quadrate bestimmten Funktion. Hier wurde eine logistische Funktion als Modellkurve gewählt. (gemeinfrei)
Grundlagen Statistik & Algorithmen, Teil 11

Methoden der Linearen Regressionsanalyse

Regressionsanalysen dienen dazu, Prognosen zu erstellen und Abhängigkeiten in Beziehungen aufzudecken. Will ein Smartphone-Hersteller herausfinden, mit welchem Preis er in welchem Kundenkreis welchen Umsatz erzielen kann, so kennt er nur eine Variable – den Preis – aber nicht die anderen Variablen. Heute gibt es eine große Zahl solcher Verfahren, denn sie werden für zahlreiche Zwecke benötigt, etwa in der Epidemiologie.

Weiterlesen
Kernel-Maschinen werden verwendet, um nichtlinear trennbare Funktionen zu berechnen, um so eine linear trennbare Funktion höherer Ordnung zu erhalten.  (Kernel Machine.svg / Alisneaky, svg version by User:Zirguezi / CC BY-SA 4.0)
Grundlagen Statistik & Algorithmen, Teil 5

Optimale Clusteranalyse und Segmentierung mit dem k-Means-Algorithmus

Der k-Means-Algorithmus ist ein Rechenverfahren, das sich für die Gruppierung von Objekten, die sogenannte Clusteranalyse, einsetzen lässt. Dank der effizienten Berechnung der Clusterzentren und dem geringen Speicherbedarf eignet sich der Algorithmus sehr gut für die Analyse großer Datenmengen, wie sie im Big-Data-Umfeld üblich sind, so etwa in der Bildverarbeitung und in der Kundensegmentierung.

Weiterlesen
Bestmögliche Gerade durch die „Punktwolke“ einer Messung (gemeinfrei)
Grundlagen Statistik & Algorithmen, Teil 10

Mit einfacher Regressionsanalyse Mittelwerte in Prognosen ermitteln

Regressionsanalysen dienen dazu, Prognosen zu erstellen und Abhängigkeiten in Beziehungen aufzudecken. Will ein Smartphone-Hersteller herausfinden, mit welchem Preis in welchem Kundenkreis er welchen Umsatz erzielen kann, so kennt er nur eine Variable – den Preis – aber nicht die anderen Variablen. Um 1760 erfunden, gibt es heute eine große Zahl solcher Verfahren. Dieser Beitrag beginnt mit dem einfachsten, der Einfachen Linearen Regression (ELR).

Weiterlesen
Gierige Algorithmen bestimmen z. B. die Mindestmenge an Münzen für das jeweils nötige Wechselgeld. Im Bild sind die Schritte abgebildet, die ein Mensch gehen würde, um einen gierigen Algorithmus zu imitieren, der 36 Cents herausgibt, indem er Münzen mit den Werten {1, 5, 10, 20} verwendet. Die Münze mit dem höchsten Wert, der unter dem geschuldeten Betrag liegt, ist das „lokale Optimum“.  (gemeinfrei)
Grundlagen Statistik & Algorithmen, Teil 9

Der Greedy-Algorithmus

Greedy-Algorithmen, oder gierige Algorithmen, bilden eine spezielle Klasse von Optimierungsalgorithmen, die in der Informatik auftreten. Sie zeichnen sich dadurch aus, dass sie schrittweise den Folgezustand auswählen, der zum Zeitpunkt der Wahl den größten Gewinn bzw. das beste Ergebnis (berechnet durch eine Bewertungsfunktion) verspricht z. B. Gradientenverfahren, so etwa die Berechnung von Wechselgeld oder des kürzesten Wegs. Greedy-Algorithmen sind oft schnell, lösen viele Probleme aber nicht optimal.

Weiterlesen
COVID-19 gelangt höchstwahrscheinlich über das Protein ACE2 in menschliche Lungenzellen. Dieser Prozess – Endozytose genannt – wird reguliert durch AAK1 (ein anderes Protein). Baricitinib hemmt AAK1 und könnte möglicherweise so auch das Eindringen von COVID-19 in die Lungenzellen verhindern.  (Data Revenue)
Künstliche Intelligenz gegen COVID-19

So helfen KI-Modelle und Algorithmen im Kampf gegen das Corona-Virus

Machine Learning ist ein bedeutendes Instrument im Kampf gegen die Corona-Pandemie. Wenn Bürger, Behörden und Unternehmen diese Gelegenheit nutzen, um Daten zu sammeln, vorhandenes Wissen zu vereinen und ihre Fachkenntnisse zusammenzubringen, können viele Leben gerettet werden – sowohl heute als auch in der Zukunft. Wie vielfältig die Einsatzgebiete von Machine Learning in diesem Rahmen sind, soll diese Übersicht zeigen, die von Data Revenue erstellt wurde.

Weiterlesen
Wie funktioniert der Random-Forest-Algorithmus? Antworten gibt der 12. Teil unserer Grundlagenreihe.   (© momius - stock.adobe.com)
Grundlagen Statistik & Algorithmen, Teil 12

Der Random-Forest-Klassikator als Entscheidungshilfe

Der Random-Forest-Algorithmus ist ein sogenanntes beaufsichtigtes Klassifikationsverfahren, das aus mehreren unkorrelierten Entscheidungsbäumen besteht, die eine Klassifizierung oder Vorhersage liefern. Weil sich die Entscheidungsbäume parallel verarbeiten lassen, kann der Algorithmus – bei entsprechend paralleler Ausführung – sehr schnell ausgeführt werden. Die Skalierung ist also leicht zu berechnen. Random Forests können auch der Regressionsanalyse dienen.

Weiterlesen
Data Preparation kostet Zeit, ist aber unerlässlich. Geeignete Tools können den Prozess beschleunigen und vereinfachen. (© momius - stock.adobe.com)
Data Preparation

Datenaufbereitung ist ein unterschätzter Prozess

Der Prozess der Datenaufbereitung umfasst die Reinigung, Formung und Mischung von Daten, damit sie für analytische und andere Aufgaben in optimaler Qualität bereitstehen. Nur mit erstklassigen Daten lassen sich beispielsweise Lösungen für Machine Learning und Künstliche Intelligenz effizient, sicher und zuverlässig versorgen.

Weiterlesen
IBMs neuer CEO Arvind Krishna eröffnete den IBM Data & AI Summit 2020. (2019 John O’Boyle)
Nachbericht IBM Data & AI Summit 2020

IBM liefert erweiterte KI-Fähigkeiten für Chatbots und Debattier-Software

Auf dem Online-Event „IBM Data & AI Summit 2020“ stellte Big Blues neuer CEO Arvind Krishna u. a. Erweiterungen für die KI-Technologien „Watson Assistant“ und „Project Debater“ vor. Während Watson Assistant als Framework die Erstellung von Chatbots für Banken, Callcenter und andere Funktionen erlaubt, nutzt Project Debater Sprachverarbeitungsmethoden, um virtuelle Debatten zu ermöglichen.

Weiterlesen
60.000 angemeldete Teilnehmer aus über 100 Ländern besuchten den von Databricks organisierten Spark+AI Summit 2020. (Databricks)
Nachbericht Spark+AI Summit 2020

Databricks erweitert Machine Learning Framework

Der von Databricks veranstaltete Spark+AI Summit startete kürzlich mit 60.000 angemeldeten Teilnehmern aus über 100 Ländern, die sich über die neuesten Trends und Entwicklungen aus der Welt der KI und des ML innerhalb der Apache Spark Community informierten. Databricks, der Erfinder und Betreuer von Apache Spark, hat sein 2018 vorgestelltes ML-Framework MLflow erweitert und der Open Source Community übergeben. Auf der neuen Version 3.0 von Spark bauen die neuen oder erweiterten Plattformkomponenten Delta Lake, Delta Engine und Redash auf.

Weiterlesen
Ereigniszeitanalyse mit zensierten Daten für die Vertriebsabteilung: die Überlebensfunktion für Vertriebstechniker (durchgezogene Linie) und für Vertreter (gestrichelte Linie) in einem Kaplan-Meier-Schätzer. Vertriebstechniker sind ihrer Stelle wesentlich stärker und länger treu als Vertreter. Der blaue und rötliche Hintergrund deckt sich mit der jeweiligen Kurve. (SAS)
Grundlagen Statistik & Algorithmen, Teil 6

Die Ereigniszeitanalyse – wenn Anfang und Ende die Erfolgsrate bestimmen

Die Ereigniszeitanalyse bzw. Survival Analysis umfasst eine Reihe von Werkzeugen der Statistik, mit denen die Zeit bis zum Eintritt eines bestimmten Ereignisses zwischen Gruppen verglichen wird. Auf diese Weise will man die Wirkung von prognostischen Faktoren, einer medizinischen Behandlung oder von schädlichen Einflüssen abschätzen. Bei dem Ereignis kann es sich um etwas so Endgültiges wie den Tod handeln, aber auch um den Verlust einer Arbeitsstelle, eine Scheidung oder einen Beginn, etwa um eine Geburt oder einen Heilungseintritt.

Weiterlesen
„Artificial Intelligence of Things“: Die Verknüpfung von KI und dem IoT ermöglicht eine ganzheitliche Optimierung der Fertigung. (KUKA Group)
KUKA & AIoT

Maßgeschneiderte, KI-gestützte Lösungen im IIoT-Umfeld

Zunehmend wird Machine Learning im IIoT-Umfeld genutzt. Der Anwendungsfall Predictive Maintenance greift jedoch viel zu kurz, warnt Christian Liedtke, Head of Strategic Alliances bei KUKA. Doch wenn man KI und IoT ganzheitlich zu AIoT kombiniere und in einer optimierten Smart Factory umsetze, könnten die Unternehmen Effizienzsteigerungen von bis zu 30 Prozent erzielen

Weiterlesen
Ab sofort steht das E-Book „IoT-Echtzeitanalyse“ kostenlos zum Download bereit.  (Vogel IT-Medien)
E-Book von BigData-Insider

IoT-Echtzeitanalyse

Das Sensor-gestützte Lieferketten-Management, die vorausschauende Wartung einer Windkraftanlage, der Arbeitsschutz von Mitarbeitern oder die KFZ-Versicherung eines vernetzten Autofahrers – sie alle haben eines gemeinsam: Ihre Daten werden in Echtzeit erfasst und einer zeitnahen Auswertung unterworfen. Das Internet der Dinge (Internet of Things, IoT) ist einer der größten Wachstumsbereiche der Industrie weltweit.

Weiterlesen
Operationalisierung von Advanced Analytics bedeutet die Überführung und Anwendung der aus dem Data Lab gewonnenen Erkenntnisse in die operativen Prozesse. (BARC, Tim Grosser)
Evolution

Der Übergang von Business Intelligence zu Advanced Analytics

Wenn einem BI-Nutzer Reports und Dashboards nicht mehr reichen, wird es Zeit für Prognose-Tools, die in den Disziplinen Advanced Analytics (AA) und Data Science zu finden sind. Doch AA-Modelle sind nur von begrenztem Wert, wenn man sie nicht in die Prozesse integriert. Wie der Übergang von BI zu AA gelingen kann, zeigt ein Webinar von BARC-Experte Timm Grosser.

Weiterlesen
Das Hauptgebäude (Gartenansicht) der Munich Re (© Munich Re / Marcus Buck, München)
Enterprise-Data-Warehouse-Plattform bei Munich Re

Migration auf SAP Analytics Cloud erfolgreich bewältigt

Munich RE hat Mitte vergangenen Jahres ein Projekt zur Einführung eines neuen Enterprise Data Warehouses (EDWH) für Rückversicherungsdaten erfolgreich abgeschlossen. Dabei wurde das klassische Reporting von Rückversicherungsdaten im Legacy-System „Global Data Warehouse (GDWH)“ auf eine moderne Business-Intelligence-Plattform migriert, die auf SAP BW on HANA basiert. Ziel des Projekts war die Implementierung der technischen Voraussetzung für die Anwendung moderner Business Intelligence für Rückversicherungsdaten.

Weiterlesen
Illustration des Satzes von Bayes durch Überlagerung der beiden ihm zugrundeliegenden Entscheidungsbäume bzw. Baumdiagramme. (Qniemiec / CC BY-SA 3.0)
Grundlagen Statistik & Algorithmen, Teil 2

So verfeinert das Bayes-Theorem Spam-Filter – und mehr

Mithilfe des Satzes von Bayes lassen sich Parameter schätzen und Hypothesen induktiv testen. In einem Spamfilter können so wahrscheinliche Spam-Mails ermittelt werden. Und aus den Symptomen, die bei einem bekannten Test auftreten, lassen sich wahrscheinliche Krankheitsursachen aufspüren. Der Satz von Bayes, der bedingte Wahrscheinlichkeiten beschreibt, ist also ein nahezu universell nutzbares Werkzeug der Statistik.

Weiterlesen
Ab sofort steht das E-Book „Big-Data-Datenbanken“ für registrierte Leser von BigData-Insider kostenlos zum Download bereit.  (Vogel IT-Medien)
E-Book von BigData-Insider

Big-Data-Datenbanken

Big-Data-Datenbanken sollen die unterschiedlichsten Datentypen schnell und effizient verarbeiten. Sie lösen die herkömmlichen, überwiegend relationalen Datenbanktypen ab, die meist ein Data Warehouse unterstützen. Sie lösen sie ab, um neue Geschäftsmodelle zu ermöglichen, oder sie ergänzen die Data-Warehouse-Architektur mit notwendige Fähigkeiten, etwa für Data Discovery, Realtime Analytics und Advanced Analytics (Prognose).

Weiterlesen
Machine Learning ist die einfachste Einstiegsform in Algorithmen für Software Services, die sich selbst optimieren. Diese Algorithmen eignen sich beispielsweise, um unscharfe Grenzbereiche genauer abzugrenzen oder um widersprüchliche Informationen aufzudecken, etwa im Bereich Kreditkartenbetrug. (© Weissblick - Fotolia.com)
Machine Learning

So bereitet Machine Learning Big Data auf

Seit 2014 haben Anbieter wie Microsoft, IBM, Amazon und die Apache Software Foundation das maschinelle Lernen (Machine Learning, ML) gefördert und in der Cloud zur Verfügung gestellt. Erzwungen durch den Mangel an Data Scientists, bieten ML-Algorithmen einen leicht erlernbaren Weg, um Prognosen zu erstellen.

Weiterlesen
Ab sofort steht das E-Book „Wie Maschinen selbst lernen“ kostenlos für registrierte Leserinnen und Leser von BigData-Insider zum Download bereit. (Vogel IT-Medien)
E-Book von BigData-Insider

Wie Maschinen selbst lernen

Das E-Book „Wie Maschinen selbst lernen“ stellt Methoden, Technologien und Produkte vor, mit denen Unternehmen Machine-Learning-Modelle und Algorithmen für nutzbringende Anwendungsfälle verwenden können. Die Technologie um Machine Learning und Deep Learning, allgemein „Künstliche Intelligenz“ (KI) genannt, hat in den vergangenen Jahren einen rasanten Aufschwung erlebt. Es gibt kaum noch einen Anwendungsbereich, in dem noch keine Algorithmen in den Prozessen werkeln, ober in der Fabrik oder im Weltall.

Weiterlesen
Das E-Book „Predictive Analytics“ steht ab sofort für registrierte Leser von BigData-Insider kostenlos zum Downlload bereit. (Vogel IT-Medien)
Kostenloses E-Book

Predictive Analytics

Predictive Analytics ist ein Teilbereich von Business Intelligence, der sich in erster Linie mit zu erwartenden und möglichen Ereignissen beschäftigt. Er fragt, was unter welchen Voraussetzungen passieren wird oder passieren sollte. Das ermöglicht Prognosen in zahlreichen Wirtschaftsbereichen, sei es im Vertrieb, in der Fertigung, im Einzelhandel oder in der Luftfahrt. Die Prognoseresultate werden in der Regel mit ergänzender Software visualisiert und interaktiv in Teams diskutiert, weitergeleitet und bearbeitet.

Weiterlesen
Kernidee von LOF ist, die lokale Dichte eines Punktes mit der seiner Nachbarn zu vergleichen- (gemeinfrei)
Grundlagen Statistik & Algorithmen, Teil 7

So deckt der Local Outlier Factor Anomalien auf

Um Trends zu erkennen, wird oft die Clusteranalyse herangezogen. Der k-Means-Algorithmus etwa zeigt an, wo sich Analyseergebnisse in einer Normalverteilung ballen. Für manche Zwecke ist es aber aufschlussreicher, Ausreißer zu untersuchen, denn sie bilden die Antithese zum „Normalen“, etwa im Betrugswesen. Der Local-Outlier-Factor-Algorithmus (LOF) ist in der Lage, den Abstand von Ausreißern zu ihren Nachbarn zu berechnen und deckt so Anomalien auf.

Weiterlesen
Clemens Mewald, Director of Product Management, Data Science and Machine Learning bei Databricks (Databricks)
Nachbericht Databricks Data + AI Summit 2020

Databricks unterstützt BI-Analysten im Data-Lake-Umfeld

Das von den ursprünglichen Entwicklern von Apache Spark gegründete Unternehmen Databricks hat seine Unified Analytics Platform um eine weitere Komponente erweitert. Zu den vorhandenen Komponenten Delta Lake, Delta Engine und Redash, die auf der neuen Version 3.0 von Spark aufbauen, kommt nun SQL Analytics hinzu. Dieser SQL-Editor unterstützt mit Konnektoren bislang die BI-Lösungen von Tableau und Microsoft.

Weiterlesen
Eine Wagon-Intelligence-Telematikeinheit an einem Containertragwagen. Bereits über 25.000 Wagen wurden damit ausgerüstet. Die gesamte Flotte folgt bis 2020. (amspire lab/DB Cargo)
Splunk im Einsatz bei der DB Cargo

Digitalisierung für mehr Qualität und Service im Schienengüterverkehr

Splunk Enterprise, das Hauptprodukt des Operational-Intelligence-Spezialisten Splunk, ist bei DB Cargo im Einsatz, der Güterbahnsparte der Deutschen Bahn. Im Zuge der Digitalisierung und Automatisierung des Güterverkehrs und des Fuhrparks hilft Splunk Enterprise bei der Datenerfassung und -analyse in den Projekten „Wagon Intelligence“ und „TechLOK“. Die Software-Entwicklung der beiden Projekte findet im DB Cargo amspire lab in Frankfurt am Main statt.

Weiterlesen
Sport-Analytik erlaubt zeitnahe Auwertungen von Spielen, Sportlern und Statistiken für die Zuschauer, aber auch für Vereine und Trainer und Verbände.  (© kentoh - stock.adobe.com)
Big-Data-Analysen im Sport

Die Sportwelt profitiert von intelligenter Analytik

Die drei Analytik-Anbieter SAS, Exasol und Amazon Web Services haben den Sport als Wachstumsmarkt entdeckt. Zudem sind Organisationen wie die Deutsche Bundesliga auf Innovationen bei ihren Zuschauerangeboten angewiesen, um konkurrenzfähig zu bleiben. Mit den Lösungen der drei Anbieter reicht das Angebot von der einfachen Sportgrafik bis hin zu KI-basierten Angaben und Vorhersagen, die in Echtzeit angezeigt werden.

Weiterlesen
Ab sofort steht das E-Book „Cognitive Computing“ kostenlos zum Download bereit. (Vogel IT-Medien)
E-Book von BigData-Insider

So funktioniert Cognitive Computing

Überall sprechen die IT-Anbieter von Künstlicher Intelligenz (KI), ohne jedoch genau zu definieren, was sie damit meinen. Der KI-Hype überwiegt zunehmend das, was im Kern an Nutzen für den IT-Nutzer verborgen ist. Höchste Zeit, dass die Disziplinen, die sich hinter KI verbergen, beleuchtet werden. Neben Machine Learning ist hier vor allem Cognitive Computing zu nennen.

Weiterlesen
Prinzipbild des Rete-Algorithmus. Deutlich sind zwei Netzwerke (Alpha, Beta) zu erkennen und dass darin jeweils sehr viel Speicher benötigt wird. Dieser hohe Speicherbedarf ist einer der wenigen Nachteile des Rete-Algorithmus.  (gemeinfrei)
Grundlagen Statistik & Algorithmen, Teil 3

Speed für Mustererkennung mit dem Rete-Algorithmus

Geschäftsregeln halten zahlreiche Unternehmensprozesse am Laufen, deshalb können sie mitunter sehr umfangreich werden. Der Umfang macht ihre Ausführung zeitaufwendig, weshalb jede Methode, sie zu beschleunigen, willkommen ist. Der Rete-Algorithmus beschleunigte 1979 die damals bestehenden Systeme für die Verarbeitung von Business Rules um den Faktor 3.000. Er ist bis heute die Grundlage zahlreicher Expertensysteme, etwa in der Mustererkennung.

Weiterlesen
Das IBM Watson IoT Center in München ragt mit zwei Türmen in den bajuwarischen Himmel. (IBM)
In München

IBM eröffnet globalen Watson-IoT-Hauptsitz

Die IBM hat am 16. Februar offiziell die Türen des neuen globalen Hauptsitzes für ihren neuen Geschäftsbereich Watson IoT in München geöffnet. Ziel der 200-Millionen-US-Dollar-Investition ist es, die technischen und wirtschaftlichen IoT-Potenziale weiter auszuloten. Zudem gab IBM den offiziellen Startschuss für den Aufbau eines neuen, weltweiten Innovationsökosystems rund um künstliche Intelligenz (AI) und IoT. Mitglied dieses Ökosystems ist unter anderem BMW. Weitere Partnerschaften betreffen Bosch und Visa.

Weiterlesen
Großes Interesse: IBM konnte zahlreiche Gäste auf dem IBM Watson Summit 2017 begrüßen.  ( IBM  )
IBM Watson Summit 2017

Digitalisierung schlau umgesetzt

Auf dem IBM Watson Summit 2017 in Frankfurt/Main haben führende europäische Unternehmen wie Kone, Lufthansa, Siemens oder Telekom ihre Digitalisierungsprojekte vorgestellt, die sie auf der Basis von Watson realisiert haben oder demnächst vorstellen. Darunter befand sich auch einer der ersten deutschen Chatbots.

Weiterlesen
Die Architektur von Stackable umfasst Operatoren, Agenten sowie zahlreiche Services, die unter anderem von Gaia-X und OpenTelemetry kommen können. (Stackable)
Big Data in der Enterprise Cloud

Big-Data-Projekte mit Stackable in der Ionos-Cloud

Das deutsche Start-up Stackable bietet Big-Data-Lösungen in der Enterprise Cloud an, die von Ionos betrieben wird. Im Unterschied zu den Angeboten der Hyperscaler basiert das Angebot von Stackable auf einer offenen und flexiblen Plattform, die durchgängig auf Open-Source-Komponenten setzt. Kunden haben hier die freie Wahl, welche Tools sie in welcher Version kombinieren möchten. So sollen sich maßgeschneiderte, Open-Source-basierte Lösungen erstellen lassen, die den Kunden nicht an einen bestimmten Anbieter binden.

Weiterlesen
Neo4j 4.0 antwortet auf komplizierte Herausforderungen in der Entwicklung moderner Applikationen wie etwa unbegrenzte Skalierbarkeit, intelligenter Kontext von Daten und robuste Datensicherheit für Unternehmen. (Neo4j)
Neo4j v.4.0

Graph-Datenbank Neo4j wird noch skalierbarer

Neo4j, ein marktführender Anbieter von Graph-Datenbanktools, hat die Version 4.0 seiner Plattform verfügbar gemacht. Zu den Neuerungen gehören unbegrenzte Skalierbarkeit, mandantenfähige Multi-Datenbank-Nutzung, die Integration von Apache Kafka und die besonders für Unternehmen wichtige feingranulare Steuerung von Datensicherheit und Datenschutz.

Weiterlesen
Künstliche Intelligenz muss transparent arbeiten. Nur wenn die Ergebnisse nachvollziehbar sind, sind sie vertrauenswürdig. (© willyam - stock.adobe.com)
Trusted AI

So wird Künstliche Intelligenz vertrauenswürdig

Mit der Ausbreitung von KI-Anwendungen stellen sich Schöpfern wie Benutzern zwei zentrale Fragen: Was befindet sich in der Black Box, die den Algorithmus und das Deep-Learning-Modell verbirgt? Und zweitens: Wie lässt sich sicherstellen, dass kein Unbefugter diese Software für seine Zwecke manipuliert hat? Manche KI-Hersteller und -Berater haben darauf bereits eine Antwort.

Weiterlesen
Position der Datenvirtualisierungsschicht in der Enterprise-Architektur. (Forrester 2015)
Big Data und Virtual Data Warehouse

Das Virtual Data Warehouse verhilft zur schnelleren digitalen Transformation

Das traditionelle Data Warehouse ist auf die Verarbeitung strukturierter Daten ausgelegt, welche es effizient und performant erledigt. Doch Big Data besteht aus unstrukturierten Daten, Datenströmen, die in großen Mengen und mit hoher Geschwindigkeit eintreffen. Um Leistung und Effizienz zu erhalten, aber Flexibilität hinzuzugewinnen, bietet das Virtual Data Warehouse eine vielversprechende Alternative.

Weiterlesen