Definition

Was ist Business Intelligence – BI?

| Autor / Redakteur: il1411 / Nico Litzel

(© aga7ta - Fotolia)

In der heutigen Zeit stehen Unternehmen Herausforderungen gegenüber, die rasches Handeln erfordern. Hier setzt die Business Intelligence (BI) an, die das Ziel hat, die Entscheidungsfindung in Unternehmen zu unterstützen.

Zwar hat sich die Business Intelligence (BI) mittlerweile auf dem Markt etabliert, jedoch gibt es noch immer unterschiedliche Auffassungen darüber, wie der Begriff zu interpretieren ist. Eine erste Definition geht auf den Analysten Howard Gardner zurück. Dieser definierte die BI als einen Prozess, der Daten in Informationen transformiert und diese wiederum durch die Anwendung von Erfahrungen in Wissen. Dieser klassische Ansatz umfasst folglich alle Prozesse und Systeme, mit denen sich Markt-, Wettbewerbs- und Unternehmensdaten systematisch analysieren lassen.

Eine weitere Definition beschreibt die BI aus einer IT-basierten und unternehmensspezifischen Sicht. Nach dieser Definition versteht man unter BI das entscheidungsorientierte Sammeln, Aufbereiten und Darstellen von geschäftsrelevanten Informationen. Für die Datenvisualisierung wird im Allgemeinen ein Dashboard verwendet. In dieser Definition sind also die folgenden Aspekte enthalten:

  • Entscheidungsorientierung
  • Sammlung von Daten mittels Data-Mining-Methoden
  • Aufbereitung von Daten
  • Darstellung von geschäftsrelevanten Informationen (Datenvisualisierung mittels Dashboard)

Das Ziel der Business Intelligence ist das Erzeugen erfolgswirtschaftlichen Wissens über den gegenwärtigen Status und die zukünftigen Perspektiven sowohl des eigenen Unternehmens als auch des jeweiligen geschäftlichen Umfeldes.

Die Entwicklung der BI

Schon in den 1960er-Jahren nahm die IT-basierte Management-Unterstützung ihren Anfang. Zu dieser Zeit entwickelten sich die ersten Management-Informations-Systeme (MIS). Diese hatten die Aufgabe, große Datenmengen automatisch zu verwalten und auszuwerten. Das Ergebnis der Auswertung wurde anschließend den Entscheidungsträgern zur Verfügung gestellt. Mit diesem Ansatz wurde also schon damals versucht, alle wichtigen Daten aus dem operativen Geschäft zu einem einzigen Datenmodell zusammenzuführen und zu verdichten. Da die damaligen technischen Möglichkeiten zur Umsetzung dieses Ansatzes jedoch zu begrenzt waren, erfuhren die Management-Informations-Systeme große Ablehnung.

Mit den Decision-Support-Systemen (DSS) erhielten die MIS ein Jahrzehnt später einen Nachfolger. Die Decision-Support-Systeme lieferten nicht – wie die MIS – starre Berichte, sondern zeichneten sich durch eine interaktive Entscheidungsunterstützung aus. Die Erzeugung interaktiver Berichte und untersuchbarer Daten wird inzwischen als Data Discovery bezeichnet. Da die Nutzung des Systems jedoch hoch kompliziert und nur von Spezialisten zu bewerkstelligen war, erfuhren auch diese Systeme nur wenig Akzeptanz.

In den Achtzigern wurden die MIS zu den sogenannten Executive Informations Systems (EIS) weiterentwickelt. Obwohl sich diese Systeme durch eine leicht zu bedienende Benutzeroberfläche auszeichneten, konnten sie sich nicht durchsetzen. In den 1990er-Jahren wurde schließlich das Konzept des Data Warehouse entwickelt. Bei einem Data Warehouse erfolgt die Datenhaltung in einer zentralen Datenbank. Diese unternehmensweite Datenspeicherung ermöglicht das interaktive Analysieren aller gesammelten Daten. Die Ergebnisse der Analyse kann das Unternehmen anschließend zur Entscheidungsfindung heranziehen. Als zentrale Datenverwaltung bildet das Data Warehouse noch immer die Grundlage für die Business Intelligence.

Business Intelligence in Unternehmen

Mittlerweile wird die BI nicht nur von großen Firmen, sondern zunehmend auch von mittelständischen Unternehmen genutzt. Erleichtert wird die Anwendung von BI durch entsprechende Open-Source-BI-Software-Pakete, wie sie beispielsweise das Software-Unternehmen Pentaho zur Verfügung stellt. Auch Ansätze wie die Self-Service BI vereinfachen die Anwendung deutlich. Die Self-Service BI ermöglicht auch Nutzern ohne Kenntnisse in Statistik, die gewonnenen Daten zu analysieren. Bei der Self-Service BI genügen zur Durchführung von Analysen einfache Anfragen.

Als analytisches Informationssystem setzt die BI auf den operativen Unternehmenssystemen auf. Der Einsatzbereich eines BI-Systems erstreckt sich über die gesamte Führungsebene und erreicht das obere, mittlere und untere Management. Im Allgemeinen basiert die Unterstützung durch das BI-System auf dem Online Analytical Processing (OLAP). Dadurch werden die Daten für das Berichtswesen sofort verfügbar gemacht. Außerdem können sowohl individuelle als auch Ad-hoc-Berichte erstellt werden. Da mittels eines OLAP-Cube mehrere Dimensionen gleichzeitig dargestellt werden, lassen sich diese zur Analyse auch miteinander kombinieren.

Der Einsatz von Business Intelligence zur Entscheidungsunterstützung ist kein einmaliges Projekt, sondern ein fortlaufender Zyklus, der aus mehreren Phasen besteht. Während der ersten Phase werden die gesammelten Daten quantifiziert und qualifiziert. Dies bedeutet, dass die Data Quality der Daten erhoben wird und die Daten anschließend mittels mathematischer Verfahren analysiert werden.

Anschließend werden aus den Ergebnissen der Analyse Erkenntnisse abgeleitet, die die Geschäftsvorgänge unterstützen. Die nächste Phase befasst sich mit der Bewertung dieser Erkenntnisse. Grundlage der Bewertung sind die Zielsetzungen des Unternehmens. In der letzten Phase werden die Erkenntnisse in konkrete Maßnahmen umgesetzt. Diese Umsetzungen wiederum stellen die Eingangsinformationen für den nächsten BI-Zyklus zur Verfügung.

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Aktuelle Beiträge zu diesem Thema

5 Hürden bei der Datenintegration und bewährte Lösungen

Kommentar von Stefan Müller, IT-Novum

5 Hürden bei der Datenintegration und bewährte Lösungen

Unternehmen, die ihre Daten nicht für die Geschäftsausrichtung nutzen können, werden dem Wettbewerbsdruck nicht standhalten können. Doch Daten liegen in unterschiedlichen Formaten vor und an verschiedensten Stellen im und außerhalb des Unternehmens. Zudem sind oft nur zu einem geringen Grad miteinander verknüpft. Dabei ist eine tiefgehende Datenintegration die zwingende Voraussetzung, um Daten sinnvoll zu nutzen lesen

Data Lakes, Marts, Vaults und Warehouses – wo liegt der Unterschied?

Kommentar von Neil Barton, WhereScape

Data Lakes, Marts, Vaults und Warehouses – wo liegt der Unterschied?

Big Data oder Data Analytics sind einige der größten Herausforderungen für die IT unserer Zeit. Viele Unternehmen befinden sich inmitten einer Umstellung auf eine datengesteuerte Ausrichtung ihrer Organisation und sind auf der Suche nach der dazu passenden Dateninfrastruktur. Verschiedene Ansätze versprechen Vorteile – doch vielerorts hakt es schon beim Verstehen der Begrifflichkeit. lesen

So lassen sich mit der richtigen Strategie große Datenmengen bewältigen

Kommentar von Daniel Metzger, Cloudera

So lassen sich mit der richtigen Strategie große Datenmengen bewältigen

Mit dem exponentiellen Wachstum des Datenbestands der letzten 20 Jahren steigt das Potenzial für die Transformation von Unternehmen. Laut einer Schätzung von IDC wird die Datenmenge bis 2025 auf 163 Zettabytes ansteigen. Daher überrascht es nicht, dass die Analyse dieser Daten – einschließlich der Speicherung, Verwaltung und abschließender Interpretation – einen immer höheren Stellenwert im Unternehmen einnimmt. lesen

So setzen Sie Stammdatenmanagement-Projekte richtig auf

Kommentar von Christian Bernius, Uniserv

So setzen Sie Stammdatenmanagement-Projekte richtig auf

Stammdaten (engl. Master Data) bilden die Basis für erfolgreiche Geschäftspartnerbeziehungen – sie sind wesentlich für eine gezielte Ansprache von Geschäftspartnern. Unternehmen, die auf korrekte, vollständige und aktuelle (Stamm-) Daten zugreifen können, sind zudem in der Lage, ihre Geschäfts- und Vertriebsprozesse zielführend voranzutreiben. lesen

Klassisches Data Warehousing kommt an seine Grenzen

ISG Provider Lens veröffentlicht

Klassisches Data Warehousing kommt an seine Grenzen

Die Information Services Group (ISG) hat die aktuelle Ausgabe der Provider Lens zum Thema „Data Analytics Services & Solutions Germany 2019/2020“ vorgestellt. Sie zeigt, dass Unternehmen angesichts der Datenflut auf skalierbare Datenverarbeitungslösungen setzen. lesen

Deployment von Machine Learning in die Cloud

Cloud-Storage, Entwicklungsprozesse, Auslieferung

Deployment von Machine Learning in die Cloud

Während vor wenigen Jahren Data Science in Unternehmen vor allem noch experimental war, müssen heute Entwicklungszeiten verkürzt und Vorhersagemodelle viel schneller produktiv gebracht werden. Cloud-Services wie von Google, Amazon und Microsoft helfen dabei. lesen

Microstrategy veröffentlicht umfangreiches Update

Hyperintelligence erweitert

Microstrategy veröffentlicht umfangreiches Update

Mit dem Microstrategy 2019 Update 2 wird die Plattform für Federated Analytics, Tranformational Mobility und Hyperintelligence weiter ausgebaut. Im Fokus stehen dabei Hyperintelligence für den mobilen Einsatz sowie die Integration von Analytics in gängige Geschäftsanwendungen. lesen

Reporting baut auf Flexibilität und Personalisierung

BARC-Studie veröffentlicht

Reporting baut auf Flexibilität und Personalisierung

Die Studie „The Future of Reporting“ des Business Application Research Centers (BARC) zeigt, das Flexibilität und Personalisierung die Zukunft des Reportings bestimmen werden. lesen

Enterprise-BI-Anbieter im Vergleich

BARC Score veröffentlicht

Enterprise-BI-Anbieter im Vergleich

Das Business Application Research Center (BARC) hat die fünfte Ausgabe seines BARC Score Enterprise BI and Analytics Platforms veröffentlicht. Darin werden 20 marktrelevante Hersteller auf Basis umfangreicher Kriterien und Anwenderbewertungen eingestuft. lesen

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 44402888 / Definitionen)