Definition

Was ist ein Data Warehouse?

| Autor / Redakteur: Stefan Luber / Nico Litzel

(Bild: © aga7ta - stock.adobe.com)

Das Data Warehouse stellt ein zentrales Datenbanksystem dar, das zu Analysezwecken im Unternehmen einsetzbar ist. Das System extrahiert, sammelt und sichert relevante Daten aus verschiedenen heterogenen Datenquellen und versorgt nachgelagerte Systeme.

Der Begriff Data Warehouse beschreibt eine Plattform, die Daten aus verschiedenen Datenquellen sammelt, verdichtet, sie langfristig sichert und nachgelagerte Analysesysteme versorgt. Oft wird das Data Warehouse auch als Datenlager bezeichnet. Vorteil des Datenlagers ist, dass eine globale Sicht auf Daten aus unterschiedlichen Datenbeständen entsteht. Gleichzeitig vereinfacht sich der Zugriff auf die Daten für Anwender, da sie in einer zentralen Datenbank konsistent und strukturiert bereitgestellt sind.

Den nachgelagerten Anwendungen bietet das Data Warehouse spezifisch erstellte Auszüge, die sogenannten Data Marts. Die bereitgestellten Daten lassen sich nach bestimmten Mustern analysieren und beispielsweise zur Ermittlung von betrieblichen Kennzahlen einsetzen. Oft stellt das Datenlager die Ausgangsbasis für das Data Mining dar. Die Gesamtheit aller Prozesse zur Datenbeschaffung, Verwaltung, Sicherung und Bereitstellung der Daten nennt sich Data Warehousing.

Das Data Warehousing ist in vier Teilprozesse aufteilbar:

  • Datenbeschaffung: Beschaffung und Extraktion der Daten aus verschiedenen Datenbeständen
  • Datenhaltung: Speicherung der Daten im Datenlager inklusive Langzeitarchivierung
  • Datenversorgung: Versorgung der nachgelagerten Systeme mit den benötigten Daten, Bereitstellung von Data Marts
  • Datenauswertung: Analysen und Auswertungen der Datenbestände

Architektur und Prozesse des Data Warehouse

Die Prozesse des Data Warehouse lassen sich in einem Architekturschaubild vier verschiedenen Bereichen zuordnen. Diese vier Bereiche sind:

  • die Quellsysteme,
  • die Data Staging Area,
  • die Data Presentation Area sowie
  • die Data Access Tools.

Die Daten für das Datenlager werden von verschiedenen Quellsystemen bereitgestellt. Die Staging Area des Data Warehouse extrahiert, strukturiert, transformiert und lädt die Daten aus den unterschiedlichen Systemen. Über die Staging Area gelangen die Daten in die eigentliche Datenbank des Datenlagers. Diese Datenbank stellt eine parallele Speicherplattform, die Data Presentation Area, zu den eigentlichen Quellsystemen dar und ermöglicht einen separaten Datenzugriff für Anwendungen und nachgelagerte Systeme.

Der Datenzugriff erfolgt über diverse Data Access Tools auf verschiedenen Ebenen, den sogenannten Data Marts. In der Regel basiert das Data Warehouse auf relationalen Datenbanken, die sich mittels SQL-Abfragen (Structured Query Language) auslesen lassen. Bei besonders großen Datenmengen kommen oft OLAP-Datenbanken (Online Analytical Processing) für eine hierarchische Strukturierung der Daten zum Einsatz.

Das Data Warehouse wird meist in regelmäßigen Abständen mit neuen Daten beladen. Mehr und mehr setzen sich Systeme durch, bei der die Datenversorgung des Datenlagers in Echtzeit erfolgt. Das Data Warehouse sorgt für die saubere Trennung von operativen und auswertenden Systemen und ermöglicht Analysen in Echtzeit. Diese sind wiederum dafür nutzbar, operative Systeme zu steuern.

Das Data Warehouse im Unternehmensumfeld

Im Unternehmensumfeld kommt das Data Warehouse in vielen Bereichen zum Einsatz. Es soll als unternehmensweit nutzbares Instrument verschiedene Abteilungen und die Entscheider flexibel unterstützen. Das Datenlager stellt die benötigten Daten für die Anwender zur Analyse von Unternehmensprozessen und -kennzahlen bereit. Für folgenden Aufgaben ist das Datenlager nutzbar:

  • Kosten- und Ressourcenermittlung,
  • Analyse von Geschäfts- und Produktionsprozessen,
  • Bereitstellung von Reports und Statistiken,
  • Ermittlung von Unternehmenskennzahlen,
  • Bereitstellung von Daten für weitergehende Analysen und Data Mining sowie
  • Strukturierung und Harmonisierung von Datenbeständen für eine globale Unternehmenssicht.

Big Data – der Data Lake als Ergänzung zum Data Warehouse

Eine Schwäche des Data Warehouse ist, dass es sich hauptsächlich auf die Beschaffung und Bereitstellung von herkömmlichen, strukturierten Daten vornehmlich aus SQL-Datenbanken konzentriert. Im Big-Data-Umfeld ist es allerdings notwendig, auf eine Vielzahl an Informationen zuzugreifen, die oft nur in unstrukturierter Form zur Verfügung stehen. Zudem sind deutlich größere Datenmengen zu beschaffen und bereitzustellen.

Um diese Herausforderungen zu meistern, ist das ergänzende Konzept des Data Lakes entstanden. Das Data Warehouse kann mithilfe des Data Lakes zu einer Big-Data-Analyseplattform ausgebaut werden. Der Data Lake bietet hohe Speicherkapazität und ermöglicht es, große Datenmengen abzulegen. Gleichzeitig ist er in der Lage, verschiedenste Datenformate, auch unstrukturierte, zu verarbeiten. Die im Data Lake gespeicherten Daten können bei Bedarf für Analysen herangezogen werden.

Allerdings sind die heterogenen Data-Lake-Informationen in einem Zwischenschritt aufzubereiten, damit Anwender mit den passenden Werkzeugen darauf zugreifen können. Durch geeignete Transformationen entstehen aus den unstrukturierten Rohdaten des Data Lakes strukturierte Datenbestände, die sich mit den Data Access Tools des Data Warehouse darstellen und analysieren lassen.

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Aktuelle Beiträge zu diesem Thema

Infomotion und Tableau werden Partner

Strategische Zusammenarbeit

Infomotion und Tableau werden Partner

Dank einer Alliance-Partnerschaft können Kunden des BI- und Analytics-Beratungshauses Infomotion künftig direkt auf das Portfolio des Analytics-Spezialisten Tableau zugreifen. lesen

Streaming von Rohdaten ist ein Erfolgsfaktor

Kommentar von Michael Diestelberg, Webtrekk

Streaming von Rohdaten ist ein Erfolgsfaktor

Durch die fortschreitende digitale Transformation nehmen die Verfügbarkeit und das Sammeln von Daten – über interne Prozesse oder die eigenen Kunden – immer weiter zu. Laut Schätzungen von IDC Research wird das jährlich kumulierte Datenvolumen im Jahr 2025 weltweit bereits 180 Zettabyte umfassen. Das entspricht einer Milliarde Terabytes, ein kaum vorstellbares Ausmaß. Für Unternehmen stellt das eine wachsende Ressource und ein enormes Wissenspotenzial dar. lesen

Digitale Transformation – 10 Punkte, die Unternehmen beachten sollten

Kommentar von Markus Enderlein, Infomotion

Digitale Transformation – 10 Punkte, die Unternehmen beachten sollten

Komplexere Datenwelten, neue Möglichkeiten der Vernetzung und der Wandel etablierter Technologien – die digitale Transformation schreitet in einer Geschwindigkeit voran, die selbst so manchen Branchenexperten verblüfft. Neue Herstellungsprozesse, Services und Märkte entstehen und die Nutzungsmuster und Erwartungen der Konsumenten verändern sich. lesen

Cloudera und Hortonworks vereinigen ihre Datenplattformen

Nachbericht DataWorks Summit Barcelona

Cloudera und Hortonworks vereinigen ihre Datenplattformen

Auf der diesjährigen DataWorks-Konferenz in Barcelona traten Cloudera und Hortonworks erstmals gemeinsam auf. Im Januar 2019 hatten beide auf Data Science und Big Data spezialisierten Anbieter ihren Zusammenschluss vollzogen. Als ein Ergebnis wird demnächst die neue Enterprise Data Cloud eingeführt, die vollständig auf Open Source basiert. lesen

Datenintegration in der Hybrid Cloud-Ära

ETL-Prozesse einfach gestalten

Datenintegration in der Hybrid Cloud-Ära

Das Thema Datenintegration gehört mit zu den größten Herausforderungen beim Management von hybriden und Multi-Cloud-Umgebungen. Schließlich geht es darum, Daten aus verschiedensten Quellen möglichst verlässlich aufzubereiten und zusammenzuführen. Nur wenn der vorhandene Datenpool, neuenglisch auch als „Data Lake“ bekannt, aktuell und vollständig ist, lassen sich daraus verlässliche Analysen ableiten. lesen

Echtzeit-Analytics mit cloud-basiertem Data Lake

Daten-Kraftwerk für Uniper

Echtzeit-Analytics mit cloud-basiertem Data Lake

In der Energiewirtschaft ist ein zentrales Ziel, Engpässe in der Strom- und Gasversorgung zu vermeiden. Damit dies gelingt, sind unter anderem aktuelle Informationen zur Marktsituation notwendig. Mit einer neuen Datenanalyseplattform erhält der Energieerzeuger Uniper die benötigen Daten, um schnell auf Marktentwicklungen reagieren zu können. Weiterhin hilft die Lösung dabei, den Energiehandel zu optimieren, Risiken zu bewerten und Vorschriften einzuhalten. lesen

Datenaufbereitung ist ein unterschätzter Prozess

Data Preparation

Datenaufbereitung ist ein unterschätzter Prozess

Der Prozess der Datenaufbereitung umfasst die Reinigung, Formung und Mischung von Daten, damit sie für analytische und andere Aufgaben in optimaler Qualität bereitstehen. Nur mit erstklassigen Daten lassen sich beispielsweise Lösungen für Machine Learning und Künstliche Intelligenz effizient, sicher und zuverlässig versorgen. lesen

Exasol ist jetzt auch für Amazon Web Services verfügbar

Cloud-Data-Warehouse

Exasol ist jetzt auch für Amazon Web Services verfügbar

Die Exasol AG bietet ab sofort ihre Datenanalyse-Plattform für Amazon Web Services (AWS) auf Enterprise-Ebene an. Unternehmen erhalten damit die Möglichkeit, ein flexibles Data Warehouse in der Cloud bzw. eine Datenanalyse-Lösung über AWS bereitzustellen. lesen

Das kann Azure Databricks

Spark as a Service

Das kann Azure Databricks

Microsoft stellt mit Azure Databricks eine Analyseplattform in Microsoft Azure zur Verfügung, die auf der bekannten Analysesoftware Apache Spark aufbaut. Bei der Entwicklung der Plattform haben die Entwickler von Spark mitgearbeitet. lesen

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 44681573 / Definitionen)