Definition

Was ist Big Data?

| Autor / Redakteur: Michael Radtke / Nico Litzel

(Bild: © aga7ta - stock.adobe.com)

Der im Internet und in den Unternehmen verfügbare Datenberg – diese Tatsache wird als Big Data umschrieben – wird immer größer, unübersichtlicher und lässt sich nur schwer verarbeiten. Immer technologisch anspruchsvollere Tools und Programme sollen die Datenflut zähmen.

Der Begriff Big Data stammt aus dem englischen Sprachraum. Erst als Phänomen oder als Hype wahrgenommen, fassen die Experten mittlerweile unter diesem Begriff zwei Aspekte zusammen. Demnach umschreibt er zum einen die immer rasanter wachsenden Datenmengen; zum anderen aber geht es auch um neue und explizit leistungsstarke IT-Lösungen und Systeme, mit denen Unternehmen die Informationsflut vorteilhaft verarbeiten können – Stichwort Machine Learning. Insbesondere unstrukturierte Daten – zum Beispiel aus den sozialen Netzwerken – machen dabei einen nicht unerheblichen Teil der Massendaten aus. Mit dem Grid Computing steht diesbezüglich jetzt eine spezielle Form des verteilten Rechnens zur Verfügung, womit eine rechen- und datenintensive Datenverarbeitung ermöglicht wird.

Eine neue Ära digitaler Kommunikation

In Deutschland wird die Wortschöpfung Big Data oft als Sammelbegriff für die moderne digitale Technologie verwendet. Aber nicht nur die digitalen Datenmengen an sich stehen im Fokus. Vielmehr nimmt Big Data und die damit einhergehende Digitalisierung auch nachhaltig Einfluss auf die Sammlung, Nutzung, Verwertung, Vermarktung und vor allem Analyse der digitalen Daten. Inzwischen steht dieser Name diesbezüglich für eine vollkommen neue Ära digitaler Kommunikation und entsprechender Verarbeitungspraktiken. In sozialer Hinsicht wird dieser Umstand sogar für einen grundlegenden gesellschaftlichen Wandel – respektive Umbruch – verantwortlich gemacht.

Wettbewerbsvorteile mit Big Data Analytics generieren

Diese Entwicklung hat aber gerade Auswirkungen auf die Unternehmenslandschaft. Die Firmen erhalten nämlich durch die großen Mengen an Daten, die zur Verfügung stehen, ganz neue Einblicke in die Interessen, das Kaufverhalten und auch das Risikopotenzial von Kunden sowie von potenziellen

Interessenten. Damit die Information auch entsprechend gefiltert, untersucht, beurteilt und entsprechend eingeordnet werden können, greifen Unternehmen gezielt zu Analytics-Methoden. Hinter dem Begriff Analytics verbergen sich dabei explizite Maßnahmen, um in dem Datenbergen unbekannte Korrelationen, versteckte Muster und andere nützliche Informationen zu identifizieren. Diese Erkenntnisse können dann für Wettbewerbsvorteile gegenüber Konkurrenten sorgen oder auch anderweitige geschäftliche Vorteile – wie etwa ein effektiveres Marketing oder auch Umsatzsteigerungen – bringen.

Software Tools für eine fortschrittliche Analytik

Die Unternehmen verfolgen mit der komplexen Datenanalyse dabei in erster Linie das Ziel, bessere Entscheidungsgrundlagen für die eigene Geschäftstätigkeit zu schaffen. Um dieses Hauptziel zu realisieren, wertet ein Data Scientist – die Experten für Big Data – die riesigen Mengen an entsprechenden Transaktionsdaten sowie zusätzlich an anderweitigen Informationen aus den unterschiedlichsten Datenquellen aus.

Zu diesen Quellen zählen zum Beispiel Internet-Clickstreams, Protokolle von Webservern, Einzelverbindungsnachweise für Mobiltelefone, Informationen von Sensoren oder vor allem auch Berichte über Social-Media-Aktivitäten der User. Für die Verarbeitung und Analyse dieser Massendaten greifen Unternehmen auf Software Tools zurück, die sowohl Big als auch Small Data Analytics umfassend ermöglichen.

Quelloffene Software Frameworks

In den vergangenen Jahren ist eine ganz neue Klasse von extrem leistungsstarken Technologien und Programmen entstanden. Dabei rücken gerade quelloffene Software Frameworks wie Apache Hadoop, Spark, NoSQL-Datenbanken sowie zum Beispiel Map Reduce in den Fokus. Gerade Spark und vor allem Hadoop erfreuen sich dabei einer ungemein großen Beliebtheit. Hadoop basiert auf dem von Google generierten MapReduce-Algorithmus in Kombination mit Vorschlägen des Google-Dateisystems. Anwender können mit diesem Programm große Datenmengen im Rahmen intensiver Rechenprozesse auf so bezeichneten Computerclustern verarbeiten; dieser Vorgang wird auch als Cluster Computing bezeichnet. Die Entwicklung in diesem Bereich wird stetig durch Software-Unternehmen vorangetrieben, etwa von den Anbietern Cloudera oder Hortonworks.

Big Table, Graphdatenbanken und Distributed File Systems

Immer mehr an Bedeutung gewinnt dabei zum Beispiel Big Table, das von Google entwickelte Hochleistungs-Datenbanksystem. Auch das einfach strukturierte, verteilte Datenbankverwaltungssystem Cassandra rückt als explizite Lösung für sehr große strukturierte Datenbanken verstärkt in den Vordergrund. Dabei ist Cassandra insbesondere auf Ausfallsicherheit und eine hohe Skalierbarkeit ausgelegt.

Eine weitere Lösungsalternative stellen zum Beispiel Graphdatenbanken dar. Hierbei werden stark vernetzte Informationen als Graphen dargestellt, wobei die spezialisierten Graphalgorithmen komplexe bzw. komplizierte Datenbankanfragen erheblich vereinfachen. Zudem ist es ratsam, ein verteiltes Dateisystem – ein Distributed File System – zu nutzen. Ein solches Netzwerk-Dateisystem optimiert die Zugriffs- und Speicherungsmöglichkeiten deutlich.

Optimierte Speichertechnik

Neben moderner und hoch funktioneller Software spielt auch die Hardware – explizit die Speichertechnologie – bei Big Data eine entscheidende Rolle. Mittlerweile macht es die Speichertechnologie möglich, Datenvolumen im Rahmen des sogenannten In-Memory Computing direkt im Hauptspeicher eines Rechners zu halten. Früher mussten diese Daten gewöhnlich auf langsamere Speichermedien wie Festplatten oder Datenbanken ausgelagert werden. Dank In-Memory Computing wird jetzt die Rechengeschwindigkeit deutlich erhöht und die Echtzeitanalyse umfangreicher Datenbestände ermöglicht.

Was ist Big Data? Analytics, Definition, Bedeutung & Beispiele

Logistiksoftware

Was ist Big Data? Analytics, Definition, Bedeutung & Beispiele

16.01.19 - An Big Data führt kein Weg mehr vorbei. Trotzdem sehen viele Betriebe das Thema noch skeptisch. Hier erfahren Sie, was Big Data bedeutet, welche konkreten Anwendungsszenarien es gibt und welche Trends Experten Big-Data-Technologien prognostizieren – Praxisbeispiele inklusive! lesen

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Aktuelle Beiträge zu diesem Thema

EU-Projekt DataBio soll Landwirtschaft voranbringen

Sensorik und Fernerkundung

EU-Projekt DataBio soll Landwirtschaft voranbringen

Mit dem Projekt DataBio will die EU künftig Landwirte bei der Logistik unterstützen. Mit an Bord ist auch das Fraunhofer IGD, das bei der Verwaltung der anfallenden Datenmengen helfen wird. lesen

Künstliche Intelligenz im Eigenbau

Übersicht KI- und ML-Stacks, Teil 2

Künstliche Intelligenz im Eigenbau

Eine kaum noch überschaubare Vielzahl an KI/ML-Frameworks, -Bibliotheken und -Diensten buhlt um die Gunst innovativer Unternehmen. So wird Big Data zur Goldgrube. lesen

Neue Datenbanken braucht das Land

Kommentar von Bruno Šimić, Couchbase

Neue Datenbanken braucht das Land

Die Geschäftswelt ändert sich schneller als je zuvor. Treiber dafür sind die immer größer werdenden Datenbanken der Firmen. Kunden konsumieren immer mehr Daten, weil sie mit immer mehr mobillen und IoT-Geräten Informationen nutzen. Um diese Herausforderungen zu bewältigen, werden verteilte Cloud- und Big-Data-Technologien benötigt. lesen

IoT-Sicherheit ist nicht nur die Sicherheit der vernetzten Dinge

E-Book von BigData-Insider

IoT-Sicherheit ist nicht nur die Sicherheit der vernetzten Dinge

Bei IoT-Risiken denken viele an die Schwachstellen der vernetzten Geräte. Für ein vollständiges IoT-Sicherheitskonzept aber muss man an die komplette IoT-Infrastruktur denken. Das E-Book von BigData-Insider zeigt, was alles dazu gehört und welche Risiken im IoT wirklich bestehen. Behandelt werden Cloud-Risiken ebenso wie die Schwachstellen in Mobilfunkstandards oder bei Big Data Analytics. lesen

Digitalisierung in der Medizin ist eine Herausforderung

Kommentar von Prof. Dr. med. Mathias Goyen, GE Healthcare

Digitalisierung in der Medizin ist eine Herausforderung

Die Digitalisierung ist heute fester Teil unserer Gesellschaft. Ihre Bedeutung, insbesondere auch für Unternehmen, wird nicht mehr in Frage gestellt. Damit verbunden sind Themen wie beispielsweise die Automatisierung von Abläufen, die Analyse von Daten, oder auch Künstliche Intelligenz (KI). lesen

KI-Engines im Bündel mit Hardware

Übersicht KI- und ML-Stacks, Teil 1

KI-Engines im Bündel mit Hardware

Künstliche Intelligenz (KI) „fällt nicht vom Himmel“. Leistungsstarke KI-Lösungen entstehen auf der Basis gut abgestimmter KI- und Machine Learning Stacks. Davon gibt es zum Glück einige. Etablierte Softwareentwicklungshäuser sind in Sachen KI und Machine Learning (ML) mittlerweile fest im Sattel. Inzwischen wollen andere Unternehmen auch mit ins Boot. lesen

Digitalisierung … so ein MIST!

Kommentar - Erst analysieren, dann transformieren

Digitalisierung … so ein MIST!

Um die digitale Transformation erfolgreich zu bewältigen und deren Vorteile bestmöglich auszuschöpfen, ist es notwendig, zunächst den Status quo zu reflektieren. Für die Analyse dieser Ausgangsgrundlage existiert eine Methodik mit dem klangvollen Namen „MIST“. lesen

Vier Schritte, um Data Lakes zu strukturieren

Kommentar von Oliver Schröder, Informatica

Vier Schritte, um Data Lakes zu strukturieren

IT-Mitarbeiter stehen vor einer Reihe von Herausforderungen. Sie müssen nicht nur immer mehr Services anbieten, sondern auch neue Technologien implementieren. Darüber hinaus müssen sie sich jetzt auch noch des Themas Kundenzufriedenheit annehmen. Denn unzufriedene Kunden beeinflussen das gesamte Unternehmen. lesen

Das kann Windows 10 IoT Core

Windows 10 fürs Internet der Dinge

Das kann Windows 10 IoT Core

Mit Windows 10 IoT Core stellt Microsoft eine Windows-10-Version zur Verfügung, die für Geräte ohne Monitor entwickelt wurde. Da auch diese Version die Universal Windows Platform nutzt, ist deren Einsatzgebiet sehr flexibel. lesen

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 44399329 / Definitionen)