Suchen

Definition Was ist Big Data Analytics?

Autor / Redakteur: Dipl.-Ing. (FH) Stefan Luber / Nico Litzel

Big Data Analytics ermöglicht es, große Datenmengen aus unterschiedlichen Quellen zu analysieren. Die gewonnenen Informationen oder erkannten Muster lassen sich einsetzen, um beispielsweise Unternehmensprozesse zu optimieren.

Firmen zum Thema

(Bild: © aga7ta - stock.adobe.com)

Big Data Analytics lässt sich in einzelne Teilgebiete gliedern. Die wichtigsten davon sind:

  • Die Datenbeschaffung aus verschiedenen Quellen mithilfe von Suchabfragen,
  • die Optimierung und Auswertung der gewonnenen Daten sowie
  • die Analyse der Daten und Präsentation der Ergebnisse.

Zunächst stellt sich bei der Big Data Analytics die Aufgabe, riesige Datenmengen unterschiedlichen Formats aus verschiedenen Quellen zu erfassen und für die weitere Bearbeitung aufzuarbeiten. Dabei besteht oft die Schwierigkeit, dass die großen Datenmengen unstrukturiert und in verschiedenen Formaten vorliegen. Da solche Informationen mit herkömmlicher Datenbanksoftware kaum zu erfassen sind, kommen bei Big Data Analytics aufwendige Prozesse zur Extraktion, Erfassung und Transaktion der Daten zum Einsatz. Anschließend erfolgt die Datenanalyse mithilfe spezieller Big Data Software, die statistische Methoden wie Predictive Analytics nutzt. Im letzten Schritt werden die gewonnen Ergebnisse aufbereitet und visualisiert. Big Data Analytics bezieht sämtliche Softwareanwendungen mit ein, die für die geschilderten Prozesse zum Einsatz kommen.

Die Herausforderungen von Big Data Analytics

Damit sich großen Informationsmengen erfassen und wie gewünscht auswerten lassen, muss Big Data Analytics mehrere Herausforderungen meistern. Die verwendete Software muss sowohl in der Lage sein, viele Suchabfragen schnell durchzuführen, als auch die unterschiedlichen Datensätze in hoher Geschwindigkeit zu importieren und zu verarbeiten. In der Regel nutzen Big-Data-Analytics-Anwendungen hierfür parallele Bearbeitungsverfahren. Es existieren für Big Data Analytics quelloffene Software-Frameworks, die spezielle Big-Data-Technologien beherrschen und die Verarbeitung von riesigen Informationsmengen mithilfe von vernetzten Clustersystemen ermöglichen.

Um die Performance weiter zu erhöhen, nutzen viele Systeme im Gegensatz zu herkömmlichen Datenbankanwendungen bei der Verarbeitung nicht Festplattenspeicher, sondern den schnelleren Arbeitsspeicher. Das sorgt für höhere Zugriffsgeschwindigkeiten und ermöglicht Analysen nahezu in Echtzeit.

Big Data Analytics zur Optimierung von Unternehmensprozessen

Big Data Analytics kommt häufig im Business-Intelligence-Umfeld zum Einsatz. Ziel ist es, mit den aus der Datenanalyse gewonnenen Erkenntnissen Unternehmensabläufe zu optimieren und Vorteile gegenüber Wettbewerbern zu erzielen. Hierfür untersucht Big Data Analytics große Mengen unterschiedlicher dem Unternehmen zur Verfügung stehender Daten nach nützlichen Informationen, versteckten Mustern oder anderen Korrelationen. Herkömmliche Programme für Business Intelligence sind zu solch umfassenden Analysen riesiger Informationsmengen nicht in der Lage. Die durch Big Data Analytics gewonnenen und visualisierten Analysen liefern Ergebnisse für die Optimierung verschiedener Geschäftsprozesse. Zudem können Sie für die Unterstützung schwieriger Entscheidungsprozesse herangezogen werden.

Weitere Anwendungsbereiche von Big Data Analytics

Neben der Business Intelligence ergeben sich für Big Data Analytics eine ganze Reihe weiterer Anwendungsbereiche. Die Analyse großer Datenmengen lässt sich beispielsweise in der Verbrechensbekämpfung, im Versicherungswesen für die Risikobewertung und Anpassung von Versicherungsbeiträgen oder im Gesundheitswesen einsetzen. Weitere mögliche Anwendungsbeispiele sind die Verarbeitung von Wetterdaten, die Auswertung von Bewegungsprofilen oder die Analyse von Webstatistiken.

(ID:44477081)

Über den Autor