Definition

Was ist Predictive Maintenance?

| Autor / Redakteur: Stefan Luber / Nico Litzel

(Bild: © aga7ta - stock.adobe.com)

Predictive Maintenance verfolgt als eine der Kernkomponenten von Industrie 4.0 einen vorausschauenden Ansatz und wartet Maschinen und Anlagen proaktiv, um Ausfallzeiten niedrig zu halten. Das Verfahren nutzt hierfür von Sensoren erfasste Messwerte und Daten.

Predictive Maintenance lässt sich mit dem Begriff „vorausschauende Wartung“ ins Deutsche übersetzen. Das Verfahren nutzt Mess- und Produktionsdaten von Maschinen und Anlagen für die Ableitung von Wartungsinformationen. Ziel ist es, die Maschinen und Anlagen proaktiv zu warten und Störungszeiten zu minimieren. Im Optimalfall lassen sich Störungen vorhersagen, bevor es zu Auswirkungen oder Ausfällen kommt. Durch die frühzeitig proaktiv eingeleiteten Wartungsmaßnahmen ist das tatsächliche Eintreten der Störung zu verhindern.

Predictive Maintenance ist eine Kernkomponente der Industrie 4.0 und grenzt sich deutlich von herkömmlichen Wartungsansätzen wie der reaktiven oder präventiven Wartung ab. Um verlässliche Vorhersagen für die vorausschauende Wartung zu treffen, ist es erforderlich, eine große Menge von Daten zu erfassen, zu speichern und zu analysieren. Aufgrund der riesigen Datenmengen kommen Techniken und Datenbanken aus dem Big-Data-Umfeld zum Einsatz. Die erfassten Messwerte und Diagnosedaten werden von den Maschinen über Netzwerke an Servicezentralen oder direkt an die Hersteller übermittelt. Als netzwerktechnische Basis fungiert in vielen Fällen das Internet of Things (IoT). Um Predictive Maintenance effizient zu betreiben, sind drei Arbeitsschritte erforderlich. Diese Arbeitsschritte sind:

  • Das Erfassen, Digitalisieren und Übermitteln von Daten,
  • das Speichern, Analysieren und Bewerten der erhobenen Daten sowie
  • das Errechnen von Eintrittswahrscheinlichkeiten für bestimmte Ereignisse.

Predictive Maintenance in Abgrenzung zu traditionellen Wartungsmethoden

Mit seinem proaktiven Charakter unterscheidet sich Predictive Maintenance deutlich von den herkömmlichen Wartungsansätzen. Die traditionelle reaktive Wartung ist einfach umzusetzen, birgt aber ein hohes Risiko. Erst wenn Fehler oder Störungen aufgetreten sind, erfolgen Analysen der Probleme und Aktionen zur Störungsbeseitigung. Im Gegensatz zur Predictive Maintenance kann die reaktive Wartung Maschinenausfälle nicht proaktiv verhindern und hat erhebliche Ausfallzeiten zur Folge. Unter Umständen sind benötigte Ersatzteile erst nach Störeintritt und erfolgter Analyse bestellbar.

Präventive Maintenance versucht genau wie Predictive Maintenance Ausfallzeiten zu vermeiden. Allerdings nutzt die präventive Wartung hierfür keine live von den Maschinen erhobenen Daten, sondern führt Wartungsmaßnahmen und den Austausch von Verschleißteilen nach zuvor festgelegten Intervallen durch. Unter Umständen werden dadurch Teile ausgetauscht, die noch einwandfrei funktionieren und noch über lange Zeiträume korrekt funktioniert hätten. Für die Optimierung der Kosten und das wirksame Verhindern von Störungen ist es extrem wichtig, den optimalen Zeitpunkt für die jeweilige präventive Wartungsmaßnahme zu finden. Sie sollte nicht zu früh aber auch nicht zu spät erfolgen. Predictive Maintenance errechnet den optimalen Zeitpunkt der Wartungsmaßnahme selbst.

Predictive Maintenance und Big Data

Für verlässliche Vorhersagen über den Zustand von Maschinen und Anlagen und eventuell zu erwartende Störungen ist es erforderlich, große Datenmengen zu erheben. Diese sind zu speichern, zu verarbeiten und mithilfe intelligenter Algorithmen zu analysieren. Die Daten können sehr unterschiedlich sein und verschiedene Formate besitzen. Neben Daten der Maschinen selbst werden auch Informationen der Peripherie und Umgebungsmerkmale wie Temperatur oder Luftfeuchtigkeit erhoben. Die Daten sind in regelmäßigen Zeitabständen zu erfassen, um aus den Veränderungen Trends und Entwicklungen ablesen zu können. Aufgrund dieser vielen verschiedenen Daten und Formaten sowie den großen Datenmengen müssen Datenbanken riesige Kapazitäten bereitstellen. Für die Analyse der Daten ist es notwendig, schnell auf die gesuchten Werte zuzugreifen und diese mit hoher Performance zu verarbeiten. Anwendungen und Datenbanksysteme aus dem Big-Data-Umfeld erfüllen all diese Voraussetzungen. Je größer die Datenbasis ist und je intelligenter und ausgefeilter die Analysealgorithmen sind, desto verlässlicher sind die zu erhaltenden Erkenntnisse.

Vorteile von Predictive Maintenance

Gegenüber den herkömmlichen Maintenance-Ansätzen wie der präventiven oder reaktiven Wartung bietet die Predictive Maintenance eine Vielzahl Vorteile. Aufgrund der Kenntnis des aktuellen Zustands der Maschine oder Anlage lassen sich ungeplante Maschinenausfälle vermeiden und Außendiensteinsätze von Servicemitarbeitern optimieren. Wartungs- und Serviceintervalle sowie das Ersatzteilemanagement sind wesentlich besser planbar. Darüber hinaus ist es durch die Analyse der gesammelten Daten möglich, die Leistung der Maschinen zu verbessern und eine höhere Produktivität zu erzielen.

Beispiele für Predictive Maintenance

Predictive Maintenance wird bereits in vielen Bereichen eingesetzt. So werden Drehzahlen, Geräusch oder Temperaturen von Motoren erfasst und ungewöhnliche Vibrationen oder Unwuchten frühzeitig erkannt. Beispielsweise ist das Versagen eines Lagers frühzeitig vorhersagbar. Maschinen und Anlagen, die per Predictive Maintenance überwacht und gewartet werden, sind beispielsweise Windräder, Kraftfahrzeuge oder Turbinen. Ausfallzeiten von Windkraftanlagen lassen sich durch Predictive Maintenance fast vollständig vermeiden. Intelligente mathematische Algorithmen führen exakte Schwingungsanalysen von verschleißgefährdeten Komponenten durch und liefern zuverlässige Prognosen über Ausfallwahrscheinlichkeiten von Bauteilen, die extremen Belastungen ausgesetzt sind.

Auch in Fahrzeugen spielt Predictive Maintenance eine zunehmend wichtigere Rolle. Umfangreiche Datenerhebungen vieler verschiedener Sensoren im Motor und Fahrwerk helfen teure Reparaturen oder Ausfälle des Fahrzeugs zu verhindern und ermöglichen es, rechtzeitig vorbeugenden Aktivitäten einzuleiten. So können Fahrzeugteile beim nächsten Werkstattbesuch getauscht werden, bevor sie ihren Dienst versagen. Sind die Fahrzeuge vernetzt und liefern die Daten online an Servicewerkstätten oder den Fahrzeughersteller, kann der Fahrzeughalter bei zu erwartenden Problemen darüber informiert werden, die Werkstatt außerplanmäßig für eine dringend durchzuführende Wartung oder einen Teileaustausch aufzusuchen.

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Aktuelle Beiträge zu diesem Thema

Digitalisierung für mehr Qualität und Service im Schienengüterverkehr

Splunk im Einsatz bei der DB Cargo

Digitalisierung für mehr Qualität und Service im Schienengüterverkehr

Splunk Enterprise, das Hauptprodukt des Operational-Intelligence-Spezialisten Splunk, ist bei DB Cargo im Einsatz, der Güterbahnsparte der Deutschen Bahn. Im Zuge der Digitalisierung und Automatisierung des Güterverkehrs und des Fuhrparks hilft Splunk Enterprise bei der Datenerfassung und -analyse in den Projekten „Wagon Intelligence“ und „TechLOK“. Die Software-Entwicklung der beiden Projekte findet im DB Cargo amspire lab in Frankfurt am Main statt. lesen

SAS fokussiert sich auf IoT, Cloud-Solutions und KI

Nachbericht SAS Forum 2019 Bonn

SAS fokussiert sich auf IoT, Cloud-Solutions und KI

Auf dem diesjährigen SAS Forum hat der Analytics-Spezialist seine Produkte „SAS Intelligent Decisioning“ und „SAS Analytics for IoT“ vorgestellt sowie „SAS Demand Planning“ angekündigt. Die neue Plattform Viya werde komplett im Kubernetes-Container laufen. Daher wird es künftig neue Preismodelle geben. lesen

Weltweit erster KI-Computer für die Bahnindustrie

KI-Railway-Computer

Weltweit erster KI-Computer für die Bahnindustrie

Der, so Syslogic, „weltweit erste KI Railway Computer“ eignet sich für KI- und Deep-Learning-Anwendungen wie die Unterstützung von teilautonomem Fahren, Predictive Maintenance oder Condition Based Monitoring. lesen

Arrow und IBM entwickeln IoT-Lösung für Flughäfen

Sensoren und Wireless Gateways

Arrow und IBM entwickeln IoT-Lösung für Flughäfen

Arrow Electronics hat in Kooperation mit IBM die Lösung Smart Airport Asset Management vorgestellt. Die Daten werden von Sensoren erhoben, die mit Wireless Gateways verbunden sind, und anschließend auf der IBM Watson IoT-Plattform zusammengefasst und analysiert. lesen

Smartes Gateway für industrielles IoT

Industrie 4.0

Smartes Gateway für industrielles IoT

Der smarte, digitale und robuste Kontroll-Knotenpunkt HUB-GM100 kann ganz unterschiedliche Sensorsignale messen, überwachen und kontrollieren. Er eignet sich beispielsweise für den Einsatz in der industriellen Fertigung, etwa für Predictive-Maintenance-Aufgaben. lesen

Der Approximationsalgorithmus

Grundlagen Statistik & Algorithmen, Teil 8

Der Approximationsalgorithmus

Für verschiedene Probleme lassen sich nur durch Annäherung bzw. Approximation optimale Lösungen finden. Durch einen geeigneten Approximationsalgorithmus versuchen Informatiker, sich dem optimalen Ergebnis anzunähern, so etwa in der Graphentheorie, die Beziehungen in Netzwerken darstellt. lesen

Mit Machine Learning lässt sich Service präzise planen

Industrial Analytics

Mit Machine Learning lässt sich Service präzise planen

Die digitale Transformation plattformunabhängig vorantreiben – dieses Ziel verfolgt Weidmüller mit einem – von Beginn an Industrie-4.0-fähig gestalteten – offenen, individuell skalierbaren Automatisierungsbaukasten. lesen

Tools für Business Intelligence

E-Book von BigData-Insider

Tools für Business Intelligence

Der Wettbewerb in der Wirtschaft ist scharf und wird in der global vernetzten Wirtschaft zunehmend härter. Führungskräfte und Sachbearbeiter wollen schneller und genauer erfahren, wie leistungsfähig die operativen Systeme des eigenen Unternehmens sind und wie sie sich im wirtschaftlichen Umfeld noch besser durchsetzen können. Zudem wollen sie zusätzliche Geschäftsfelder erschließen und neue Businessmodelle entwickeln. lesen

Smart Factory und die nahtlose Kommunikation

Initiativen zur Standardisierung industrieller Cloud-Angebote

Smart Factory und die nahtlose Kommunikation

Die Hannover Messe 2019 hat es eindrucksvoll gezeigt: Unternehmen, insbesondere die großen Konzerne, vernetzen und digitalisieren, was das Zeug hält. Mit der zunehmenden Digitalisierung als Basis für erfolgreiche Industrie-4.0-Projekte mit ihren Kerntechnologien IoT und KI verdeutlicht sich: Es ist höchste Zeit für technische Standardisierungen und die Schaffung neuer politischer wie wirtschaftlicher Rahmenbedingungen für das nahtlose Zusammenspiel von IT-Lösungen im globalen Markt. lesen

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 44873563 / Definitionen)