Die Welt der Datenanalysen wandelt sich derzeit massiv. Die klassische Business-Intelligence-Organisation kommt durch die zunehmende Vielfalt und Agilität von Analytics-Anwendungen an ihre Grenzen. Viele Unternehmen sehen im Data Mesh den geeigneten Lösungsansatz. Voraussetzung dafür ist ein fortgeschrittener Reifegrad der datengetriebenen Organisation.
Der Autor: Steffen Vierkorn ist Geschäftsführer der QUNIS GmbH
(Bild: QUNIS GmbH)
An die Datenauswertung im Unternehmen werden heute immer größere Anforderungen gestellt. Data-&-Analytics-Plattformen verarbeiten nicht mehr nur strukturierte Daten in klassischen Business-Intelligence-Analysen, sondern auch IoT-, GPS- oder Webdaten. Der Output können Reports zur internen Steuerung oder als Service für Partner, Lieferanten oder Kunden sein, aber auch Datentöpfe zur weiteren Erforschung für Data Scientists. Oder es werden direkt weitere Systeme für KI- und ML-Anwendungen gespeist. Neue Technologien, mächtige Storage- und Processing-Engines sowie leistungsfähige Applikationen sind dabei als Cloud-Lösungen auch für mittelständische Unternehmen erschwinglich und lassen sich heute flexibel nach Bedarf skalieren.
Das zentral angesiedelte BI Competence Center, das bislang die Entwicklung und das Datenmanagement rund um ein Data Warehouse erledigt hat, kommt in diesem umfassenden Analytics-Szenario an seine Grenzen. Einzelne Teams können die erforderliche Vielfalt an fachlichem und technologischem Spezialwissen nicht abdecken. Hinsichtlich der hohen Umsetzungsdynamik neuer Use Cases erweisen sie sich außerdem zunehmend als Bottleneck.
Daten als Asset bestimmen die Systemkonzeption
Das Prinzip des Data Mesh bietet hier passende Lösungsansätze. Data Mesh stellt die Daten als Wertschöpfungsfaktor in den Mittelpunkt der Architekturkonzeption. Daten sollen als „Datenprodukte“ prozess- und systemübergreifend im Unternehmen zur Verfügung gestellt werden. Die Grundidee besteht darin, Daten als Asset für die Organisation zu begreifen und Business Usern hochwertige Datenprodukte für ihre Zwecke zugänglich zu machen, damit sie diese optimal nutzen können.
Diesen Ansatz verfolgt auch die Self-Service BI schon seit Jahren. Neu ist bei Data Mesh allerdings die konsequente Delegation der Verantwortung und Kompetenzen in die dezentrale Organisation: Data Mesh versteht sich als soziotechnischer Ansatz zur Erstellung einer dezentralen Datenarchitektur. Entwicklungsteams erhalten die Verantwortung für die Entwicklung und den Betrieb von Datenprodukten ihrer fachlichen Domäne. Die Verlagerung in fachlich geschnittenen Domänenteams löst das Engpass-Problem eines einzelnen zentralen Analytics-Teams. Zugleich vervielfacht sie die Entwicklungsressourcen, erhöht damit das mögliche Umsetzungstempo neuer Use Cases und gewährleistet darüber hinaus die geforderte fachliche Expertise in der jeweiligen Domäne.
Data Lakehouse unterstützt Data Mesh
Die Dateninfrastruktur für die Domänenteams wird in Form einer Datenplattform nach dem Self-Service-Gedanken bereitgestellt. Im Gegensatz zur klassischen Data-Warehouse-Architektur mit zentralisierten Datenströmen handelt es sich hier um eine domänenorientierte dezentrale Architektur für analytische Daten. Die Definition von Data Mesh zielt eher auf die Governance und Organisation des datengetriebenen Unternehmens ab als auf technologische Aspekte. Es gibt aber eine Kernarchitektur, die sich zur Umsetzung von Data Mesh besonders eignet:
Das Data Lakehouse unterstützt die dezentrale Arbeit mit Datenprodukten. Durch die Trennung von Storage und Computing bietet es eine hohe Flexibilität zur Einrichtung verschiedener Domänen mit jeweils eigenen Datenprodukten auf einem gemeinsamen Datenlayer. Ein heterogener Technologie-Stack greift dabei über Open Table Format auf Daten aus verschiedenen Quellen zu und bereitet sie für Use Cases wie BI, ML, Data Science oder Data Engineering in diversen Domänen auf. Unter Berücksichtigung einer stringenten Access Control lassen sich die Datenquellen auf diese Weise verschiedenen Teams für ihre Auswertungen zugänglich machen. Datensilos werden vermieden und domänenübergreifende Datenabfragen unterstützt. Das verteilte Computing ermöglicht es zudem, unvorhergesehene Lastspitzen aus anderen Domänen abzufangen.
Reifegrad der dezentralen Governance als Erfolgsfaktor
Gemäß Definition basiert Data Mesh auf den vier Grundprinzipien Domain Ownership, Data Products, Self-Service und Federated Governance. Die verteilte Governance ist in diesem Kontext der wesentliche Erfolgsfaktor für die Etablierung von Data Mesh. Im Rahmen der Governance legen die beteiligten Teams gemeinsame Standards und Regeln fest, um ihre Zusammenarbeit, die Harmonisierung der Daten und Sicherheitsanforderungen zu gewährleisten.
Aufgaben wie das Qualitätsmanagement und die Klassifikation von Daten, Security, Schnittstellen-Verwaltung oder die Definition und Verwaltung von Datenprodukten sind über die gesamte Organisation verteilt. Die Verantwortlichkeiten müssen hier klar geregelt sein. QUNIS hat dafür ein dezidiertes Rollenmodell entwickelt, das sich seit Jahren in Data-&-Analytics-Projekten bewährt. Das Rollenmodell legt unter anderem das Ownership für Domänen, Datenprodukte oder Datenobjekte wie „Kunden“, „Artikel“ oder „Partner“ fest. Datenexperten wie Data Owner, Data Steward und das Data Governance Board arbeiten dabei mit Funktionen eines BI- oder erweiterten Analytics-Rollenmodells zusammen. Dazu gehören zum Beispiel die Rollen End User, Power User, Solution Architect, Data Engineer mit DataOps, Data Architect sowie Data Scientist mit MLOps.
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel IT-Medien GmbH, Max-Josef-Metzger-Straße 21, 86157 Augsburg, einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von Newslettern und Werbung nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung.
Über das Rollenmodell kann der Data-Mesh-Gedanke bis hin zu den DevOps etabliert werden. Die Verankerung und Durchsetzung der Rollen und einer starken Governance sind die Voraussetzung dafür, dass die verschiedenen Teams orchestriert zusammenarbeiten, qualitativ hochwertige Datenprodukte geliefert werden und der weitgehende Self-Service im Rahmen zuverlässiger Standards funktioniert.
Die Umsetzung von Data Mesh steht und fällt mit dem Reifegrad dieser Datenorganisation. Diese Organisation ist funktionsübergreifend und deckt sich damit nicht unbedingt mit der üblichen Einteilung in Geschäfts- oder Fachbereichen. Daher ist die Mitwirkung des Management Boards bei der Kontrolle und Etablierung der datengesteuerten Organisation und Architektur unbedingt notwendig.
Unternehmen verstehen, dass Daten immer mehr zur Wertschöpfung beitragen. Die kluge Nutzung und Auswertung der Daten bringen den entscheidenden Wettbewerbsvorteil. Für größere Konzerne und auch für viele mittelständische Unternehmen ist erweiterte Analytics daher inzwischen selbstverständlich. Data Mesh bietet die Möglichkeit, sich in diesem Bereich agiler aufzustellen. QUNIS sieht daher derzeit eine große Dynamik und viel Kraft am Markt, das verteilte Organisations- und Architekturkonzept im Unternehmen umzusetzen. In den Projekten zeigt sich, dass das Data Lakehouse hierbei eine große Hilfe ist, weil die Technologie das flexible Splitten von Datenräumen erlaubt und die Verteilung von Verantwortung für Datenprodukte unterstützt.