Definition

Was ist Machine Learning?

| Autor / Redakteur: Stefan Luber / Nico Litzel

(Bild: © aga7ta - stock.adobe.com)

Machine Learning, im Deutschen maschinelles Lernen, ist ein Teilgebiet der künstlichen Intelligenz. Durch das Erkennen von Mustern in vorliegenden Datenbeständen sind IT-Systeme in der Lage, eigenständig Lösungen für Probleme zu finden.

Machine Learning ist ein Teilbereich der künstlichen Intelligenz. Mithilfe des maschinellen Lernens werden IT-Systeme in die Lage versetzt, auf Basis vorhandener Datenbestände und Algorithmen Muster und Gesetzmäßigkeiten zu erkennen und Lösungen zu entwickeln. Es wird quasi künstliches Wissen aus Erfahrungen generiert. Die aus den Daten gewonnenen Erkenntnisse lassen sich verallgemeinern und für neue Problemlösungen oder für die Analyse von bisher unbekannten Daten verwenden.

Damit die Software eigenständig lernen und Lösungen finden kann, ist ein vorheriges Handeln von Menschen notwendig. Beispielsweise müssen die Systeme zunächst mit den für das Lernen relevanten Daten und Algorithmen versorgt werden. Zudem sind Regeln für die Analyse des Datenbestands und das Erkennen der Muster aufzustellen. Sind passende Daten vorhanden und Regeln definiert, können Systeme mit maschinellem Lernen unter anderem folgendes:

  • Relevante Daten finden, extrahieren und zusammenfassen,
  • Vorhersagen auf Basis der analysierten Daten treffen,
  • Wahrscheinlichkeiten für bestimmte Ereignisse berechnen,
  • sich an Entwicklungen eigenständig anpassen und
  • Prozesse auf Basis erkannter Muster optimieren.

Die verschiedenen Arten des Machine Learnings

Algorithmen nehmen beim maschinellen Lernen eine zentrale Rolle ein. Sie sind für das Erkennen von Mustern und das Generieren von Lösungen verantwortlich und lassen sich in verschiedene Lernkategorien einteilen.

  • überwachtes Lernen
  • unüberwachtes Lernen
  • teilüberwachtes Lernen
  • bestärkendes Lernen
  • aktives Lernen

Während beim überwachten Lernen im Vorfeld Beispielmodelle definiert und spezifiziert werden müssen, um die Informationen passend den Modellgruppen der Algorithmen zuzuordnen, werden die Modellgruppen beim unüberwachten Lernen automatisiert aufgrund eigenständig erkannter Muster gebildet.

Teilüberwachtes Lernen stellt eine Mischung aus beiden Methoden dar. Das bestärkende Lernen basiert auf Belohnungen und Bestrafungen. Dem Algorithmus wird durch diese Interaktion mitgeteilt, wie er auf verschiedene Situationen zu reagieren hat. Diese Lernweise ist dem menschlichen Lernen sehr ähnlich.

eBook „Big Data Security und Artificial Intelligence“

BDI eBookKann mit Hilfe von Künstlicher Intelligenz (KI) oder Artificial Intelligence (AI) und Maschinellem Lernen (ML, Machine Learning) der Engpass an „menschlichen“ Security-Analysten reduziert und die Aufdeckung und Abwehr der IT-Sicherheitsvorfälle weitgehend automatisiert werden? 

eBook herunterladen »

Aktives Lernen schließlich bietet dem Algorithmus die Möglichkeit, für bestimmte Eingangsdaten die gewünschten Ergebnisse zu erfragen. Um die Anzahl von Fragen zu minimieren, erfolgt zuvor eine Auswahl relevanter Fragen mit hoher Ergebnisrelevanz durch den Algorithmus selbst.

Abhängig vom jeweiligen System kann die Datenbasis offline oder online vorliegen und wiederholbar oder nur einmalig für das maschinelle Lernen zur Verfügung stehen. Ein weiteres Unterscheidungsmerkmal des Machine Learnings ist das gleichzeitige Vorhandensein der Ein- und Ausgabe-Paare oder deren zeitlich versetzte Entwicklung. Je nach Art spricht man vom Batch-Lernen oder vom sequenziellen Lernen.

Anwendungsbeispiele für das Machine Learning

Machine Learning hat ein sehr großes Spektrum an Anwendungsmöglichkeiten. Im Internetumfeld kommt maschinelles Lernen beispielsweise für folgende Funktionen zum Einsatz:

  • selbstständiges Erkennen von Spam-Mails und Entwicklung geeigneter Spam-Filter
  • Sprach- und Texterkennung für digitale Assistenten
  • Bestimmung der Relevanz von Webseiten für Suchbegriffe
  • Erkennung und Unterscheidung der Internetaktivität von natürlichen Personen und Bots

Weitere Anwendungsbereiche des maschinellen Lernens sind die Bild- und Gesichtserkennung, automatische Empfehlungsdienste oder die automatische Erkennung von Kreditkartenbetrug.

Big Data als Treiber des maschinellen Lernens

Durch die Entwicklung im Bereich der Big-Data-Technik hat auch das maschinelle Lernen einen enormen Schub erhalten. Da beim Machine Learning große Datenmengen vorhanden sein und effizient bearbeitet werden müssen, bilden Big-Data-Systeme die ideale Basis für diese Art des Lernens. Es lässt sich mithilfe von Big Data sowohl strukturiert als auch unstrukturiert vorliegende Daten schnell und mit relativ geringem Hardwareaufwand analysieren und den Lernalgorithmen zuführen.

Für das maschinelle Lernen kommen verteilte Rechnerstrukturen und besonders schnell arbeitende Datenbanksysteme zum Einsatz. Ebenfalls genutzt werden künstliche neuronale Netze, die nach dem Vorbild des menschlichen Gehirns funktionieren.

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Aktuelle Beiträge zu diesem Thema

Rechenzentren im Mittelpunkt der IoT-Datenflut

Enterprise Ireland gibt 5 Tipps für serviceorientierte Datacenter

Rechenzentren im Mittelpunkt der IoT-Datenflut

Es dreht sich um mehr als Kühlschränke, die eigenständig neue Einkaufslisten erstellen, oder in der Wohnung installierte Beleuchtungs- und Heizungssysteme, die sich automatisch einschalten, sobald die Bewohner auf dem Weg nach Hause sind. Connected Health, Smart Retail- oder Smart City-Projekte rufen große Begeisterung hervor und gewinnen immer mehr an Bedeutung. Rechenzentren müssen diese Infos verarbeiten, doch liefern sie längst eigene. lesen

Diamant Software eröffnet Kompetenzzentrum

Künstliche Intelligenz

Diamant Software eröffnet Kompetenzzentrum

Das Unternehmen Diamant Software aus Bielefeld plant ein neues KI-Kompetenzzentrums in Darmstadt. Dieses soll im Mai diesen Jahres eröffnet werden. lesen

Das bringt KI im Field Service Management

Interview mit Manuel Grenacher von SAP

Das bringt KI im Field Service Management

Manuel Grenacher ist General Manager für Field Service Management bei SAP. Als solcher hat er in einer jetzt verschickten Pressemitteilung die Vorzüge für den Einsatz von KI benannt. Wir haben genauer nachgefragt. lesen

Mit Apache Zeppelin Daten analysieren

Interaktives Notizbuch für Big Data

Mit Apache Zeppelin Daten analysieren

Das Apache-Toplevel-Projekt Zeppelin bietet ein Notizbuch für Daten aus anderen Systemen, mit denen Anwender diese effektiv analysieren können. Zeppelin arbeitet dazu eng mit Spark, Flink und Hadoop zusammen. lesen

KI errechnet, wie wahrscheinlich Game-of-Thrones-Charaktere sterben

Maschinelles Lernen

KI errechnet, wie wahrscheinlich Game-of-Thrones-Charaktere sterben

Studenten der TU München haben einen Algorithmus programmiert, der anhand verschiedener Faktoren berechnet, welcher Charakter von „Game of Thrones“ am wahrscheinlichsten überlebt – und welcher sterben könnte. lesen

SAP HANA unterstützt Persistent-Memory-Technik

Funktionsumfang ausgebaut

SAP HANA unterstützt Persistent-Memory-Technik

Der Softwarekonzern SAP hat Erweiterungen für die Cloud- und On-Premises-Versionen seiner HANA-Datenbank angekündigt. Dazu zählen unter anderem erweitere Cloud-Unterstützung, Support von Intels Persistent-Memory-Technik sowie neue Machine-Learning-basierte Funktionen. lesen

Objekte für die Zettabyte-Ära

Womit sich Start-ups heute beschäftigen – MinIO

Objekte für die Zettabyte-Ära

MinIO ist nach Angaben des gleichnamigen Herstellers „ein hochleistungsfähiger, verteilter Objektspeicher-Server für datenintensive Anwendungen wie Deep und Machine Learning, Künstliche Intelligenz und Big Data“. Erstellt wurde das Open-Source-Programm (unter der Apache-Lizenz 2.0) mit der Programmiersprache Go. lesen

Deep Learning und wie ein Neuronales Netz entscheidet

Künstliche Intelligenz

Deep Learning und wie ein Neuronales Netz entscheidet

Bei Deep Learning ist es kaum nachvollziehbar, warum ein Neuronales Netz bestimmte Entscheidungen trifft. Doch welche Kriterien spielen bei der Entscheidung eine Rolle? lesen

Datenbasierte Früherkennung von Krankheiten findet Anklang

Analytics in der Medizin

Datenbasierte Früherkennung von Krankheiten findet Anklang

Wie der Digitalverband Bitkom berichtet, steht eine Mehrheit der Bundesbürger der Früherkennung von Krankheiten mittels Datenanalyse aufgeschlossen gegenüber. Insbesondere die jüngere Generation zeigt sich sehr interessiert. lesen

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 44588634 / Definitionen)