Definition

Was ist Machine Learning?

| Autor / Redakteur: Stefan Luber / Nico Litzel

(Bild: © aga7ta - stock.adobe.com)

Machine Learning, im Deutschen maschinelles Lernen, ist ein Teilgebiet der künstlichen Intelligenz. Durch das Erkennen von Mustern in vorliegenden Datenbeständen sind IT-Systeme in der Lage, eigenständig Lösungen für Probleme zu finden.

Machine Learning ist ein Teilbereich der künstlichen Intelligenz. Mithilfe des maschinellen Lernens werden IT-Systeme in die Lage versetzt, auf Basis vorhandener Datenbestände und Algorithmen Muster und Gesetzmäßigkeiten zu erkennen und Lösungen zu entwickeln. Es wird quasi künstliches Wissen aus Erfahrungen generiert. Die aus den Daten gewonnenen Erkenntnisse lassen sich verallgemeinern und für neue Problemlösungen oder für die Analyse von bisher unbekannten Daten verwenden.

Damit die Software eigenständig lernen und Lösungen finden kann, ist ein vorheriges Handeln von Menschen notwendig. Beispielsweise müssen die Systeme zunächst mit den für das Lernen relevanten Daten und Algorithmen versorgt werden. Zudem sind Regeln für die Analyse des Datenbestands und das Erkennen der Muster aufzustellen. Sind passende Daten vorhanden und Regeln definiert, können Systeme mit maschinellem Lernen unter anderem folgendes:

  • Relevante Daten finden, extrahieren und zusammenfassen,
  • Vorhersagen auf Basis der analysierten Daten treffen,
  • Wahrscheinlichkeiten für bestimmte Ereignisse berechnen,
  • sich an Entwicklungen eigenständig anpassen und
  • Prozesse auf Basis erkannter Muster optimieren.

Die verschiedenen Arten des Machine Learnings

Algorithmen nehmen beim maschinellen Lernen eine zentrale Rolle ein. Sie sind für das Erkennen von Mustern und das Generieren von Lösungen verantwortlich und lassen sich in verschiedene Lernkategorien einteilen.

  • überwachtes Lernen
  • unüberwachtes Lernen
  • teilüberwachtes Lernen
  • bestärkendes Lernen
  • aktives Lernen

Während beim überwachten Lernen im Vorfeld Beispielmodelle definiert und spezifiziert werden müssen, um die Informationen passend den Modellgruppen der Algorithmen zuzuordnen, werden die Modellgruppen beim unüberwachten Lernen automatisiert aufgrund eigenständig erkannter Muster gebildet.

Teilüberwachtes Lernen stellt eine Mischung aus beiden Methoden dar. Das bestärkende Lernen basiert auf Belohnungen und Bestrafungen. Dem Algorithmus wird durch diese Interaktion mitgeteilt, wie er auf verschiedene Situationen zu reagieren hat. Diese Lernweise ist dem menschlichen Lernen sehr ähnlich.

eBook „Big Data Security und Artificial Intelligence“

BDI eBookKann mit Hilfe von Künstlicher Intelligenz (KI) oder Artificial Intelligence (AI) und Maschinellem Lernen (ML, Machine Learning) der Engpass an „menschlichen“ Security-Analysten reduziert und die Aufdeckung und Abwehr der IT-Sicherheitsvorfälle weitgehend automatisiert werden? 

eBook herunterladen »

Aktives Lernen schließlich bietet dem Algorithmus die Möglichkeit, für bestimmte Eingangsdaten die gewünschten Ergebnisse zu erfragen. Um die Anzahl von Fragen zu minimieren, erfolgt zuvor eine Auswahl relevanter Fragen mit hoher Ergebnisrelevanz durch den Algorithmus selbst.

Abhängig vom jeweiligen System kann die Datenbasis offline oder online vorliegen und wiederholbar oder nur einmalig für das maschinelle Lernen zur Verfügung stehen. Ein weiteres Unterscheidungsmerkmal des Machine Learnings ist das gleichzeitige Vorhandensein der Ein- und Ausgabe-Paare oder deren zeitlich versetzte Entwicklung. Je nach Art spricht man vom Batch-Lernen oder vom sequenziellen Lernen.

Anwendungsbeispiele für das Machine Learning

Machine Learning hat ein sehr großes Spektrum an Anwendungsmöglichkeiten. Im Internetumfeld kommt maschinelles Lernen beispielsweise für folgende Funktionen zum Einsatz:

  • selbstständiges Erkennen von Spam-Mails und Entwicklung geeigneter Spam-Filter
  • Sprach- und Texterkennung für digitale Assistenten
  • Bestimmung der Relevanz von Webseiten für Suchbegriffe
  • Erkennung und Unterscheidung der Internetaktivität von natürlichen Personen und Bots

Weitere Anwendungsbereiche des maschinellen Lernens sind die Bild- und Gesichtserkennung, automatische Empfehlungsdienste oder die automatische Erkennung von Kreditkartenbetrug.

Big Data als Treiber des maschinellen Lernens

Durch die Entwicklung im Bereich der Big-Data-Technik hat auch das maschinelle Lernen einen enormen Schub erhalten. Da beim Machine Learning große Datenmengen vorhanden sein und effizient bearbeitet werden müssen, bilden Big-Data-Systeme die ideale Basis für diese Art des Lernens. Es lässt sich mithilfe von Big Data sowohl strukturiert als auch unstrukturiert vorliegende Daten schnell und mit relativ geringem Hardwareaufwand analysieren und den Lernalgorithmen zuführen.

Für das maschinelle Lernen kommen verteilte Rechnerstrukturen und besonders schnell arbeitende Datenbanksysteme zum Einsatz. Ebenfalls genutzt werden künstliche neuronale Netze, die nach dem Vorbild des menschlichen Gehirns funktionieren.

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Aktuelle Beiträge zu diesem Thema

Tableau stellt Neuheiten auf Fachkonferenz vor

Blueprint und mehr

Tableau stellt Neuheiten auf Fachkonferenz vor

Im Rahmen seiner Fachkonferenz in Las Vegas hat Tableau unter anderem mit Blueprint eine neue Methodik zum Aufbau einer Datenkultur vorgestellt. Zudem präsentierte das Unternehmen Neuheiten rund um KI-gesteuerte Analysen und das Self-Service-Datenmanagement. lesen

Katana bringt Big-Data-Lösung für Maschinenbauer

KI-gestützte Schwingungsanalysen

Katana bringt Big-Data-Lösung für Maschinenbauer

Katana, Geschäftsbereich von USU Software, bietet künftig eine Big-Data-Gesamtlösung für Mittelständler an. Das System richtet sich speziell an Hersteller von Dreh- und Fräsmaschinen. lesen

Datenqualität ist der größte Erfolgsfaktor

BARC-Studie zu BI-Trends

Datenqualität ist der größte Erfolgsfaktor

Das Business Application Research Center (BARC) hat sich im Rahmen des „BI Trend Monitors 2020“ mit der Frage befasst, welche Trends im Bereich Business Intelligence aktuell sind. Dabei zeigte sich auch, dass Datenqualität ein wesentlicher Erfolgsfaktor ist. lesen

Qlik setzt auf Augmented Intelligence und die Multi-Cloud

Nachbericht Qlik Data Revolution Tour 2019

Qlik setzt auf Augmented Intelligence und die Multi-Cloud

Auf der Kundenveranstaltung „Data Revolution Tour 2019“ zeigte der BI-Anbieter Qlik die breite Palette seiner Angebote in einer Multi-Cloud-Plattform. Sie werden u. a. bei Porsche AG genutzt. An Neuheiten stellte die Forschungsleitern Elif Tutuk „Qlik Insight Bot“ und „Qlik Insight Advisor“ mit Sprachunterstützung vor. lesen

Analytics-Methoden – von deskriptiven Analysen bis Machine-Learning-Algorithmen

Algorithmen

Analytics-Methoden – von deskriptiven Analysen bis Machine-Learning-Algorithmen

Dem Datenanalysten stehen zahlreiche Methoden zur Verfügung. Der folgende Artikel erläutert einige Methoden – von statistischen, deskriptiven Methoden bis zu Supervised und Unsupervised Machine Learning. lesen

Edge-KI – der nächste Evolutionsschritt?

Kommentar von Robert Jänisch, IOX

Edge-KI – der nächste Evolutionsschritt?

Glaubt man den Experten – oder zumindest den Marketingabteilungen der einschlägigen Unternehmen – so wird Künstliche Intelligenz (KI) in Zukunft unser Leben verändern. Das Problem: Viele der futuristischen und gern als Beispiel gewählten Anwendungsfälle sind nach heutigem Stand der Forschung und Praxis eben nur Zukunftsvisionen. Einer der vielen Gründe dafür ist, dass das Cloud Computing schlicht nicht schnell genug ist, um fortgeschrittene Use Cases dieser Art zu ermöglichen. lesen

Graph-Datenbanken

E-Book von BigData-Insider

Graph-Datenbanken

Aus dem täglichen Umgang mit dem Internet ist die Nutzung von verknüpften Daten nicht mehr wegzudenken. Seien es Freundschaftskreise auf Facebook und LinkedIn, Taxi-Anforderungen auf Uber oder Empfehlungen auf Amazon und Ebay – immer tritt im Hintergrund eine Datenbank in Aktion, die verwandte Daten sucht und miteinander in Beziehung setzt. Dabei handelt es sich in den meisten Fällen um eine Graph-Datenbank. lesen

IoT-Start-ups – von Smart Farming bis Smart Security

Nachbericht Web Summit 2019

IoT-Start-ups – von Smart Farming bis Smart Security

Wir haben uns auf dem Web Summit 2019 in Lissabon die spannendsten Start-ups und Neuheiten rund um das IoT angesehen, darunter Security-Apps für Edge Computing, Indoor Navigation für Logistik und Fertigung, Lösungen für Pflanzenbau, IoT-Communities und IoT-Appstores. lesen

UiPath baut RPA-Plattform umfangreich aus

Nächste Generation vorgestellt

UiPath baut RPA-Plattform umfangreich aus

Der Spezialist für Enterprise Robotic Process Automation (RPA) UiPath hat die nächste Generation seiner RPA-Plattform präsentiert. Sie bietet unter anderem zahlreiche neue Funktionen für die End-to-End-Automatisierung von Prozessen und erweiterte KI-Fähigkeiten. lesen

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de/ (ID: 44588634 / Definitionen)