Definition

Was ist Machine Learning?

| Autor / Redakteur: Stefan Luber / Nico Litzel

(Bild: © aga7ta - stock.adobe.com)

Machine Learning, im Deutschen maschinelles Lernen, ist ein Teilgebiet der künstlichen Intelligenz. Durch das Erkennen von Mustern in vorliegenden Datenbeständen sind IT-Systeme in der Lage, eigenständig Lösungen für Probleme zu finden.

Machine Learning ist ein Teilbereich der künstlichen Intelligenz. Mithilfe des maschinellen Lernens werden IT-Systeme in die Lage versetzt, auf Basis vorhandener Datenbestände und Algorithmen Muster und Gesetzmäßigkeiten zu erkennen und Lösungen zu entwickeln. Es wird quasi künstliches Wissen aus Erfahrungen generiert. Die aus den Daten gewonnenen Erkenntnisse lassen sich verallgemeinern und für neue Problemlösungen oder für die Analyse von bisher unbekannten Daten verwenden.

Damit die Software eigenständig lernen und Lösungen finden kann, ist ein vorheriges Handeln von Menschen notwendig. Beispielsweise müssen die Systeme zunächst mit den für das Lernen relevanten Daten und Algorithmen versorgt werden. Zudem sind Regeln für die Analyse des Datenbestands und das Erkennen der Muster aufzustellen. Sind passende Daten vorhanden und Regeln definiert, können Systeme mit maschinellem Lernen unter anderem folgendes:

  • Relevante Daten finden, extrahieren und zusammenfassen,
  • Vorhersagen auf Basis der analysierten Daten treffen,
  • Wahrscheinlichkeiten für bestimmte Ereignisse berechnen,
  • sich an Entwicklungen eigenständig anpassen und
  • Prozesse auf Basis erkannter Muster optimieren.

Die verschiedenen Arten des Machine Learnings

Algorithmen nehmen beim maschinellen Lernen eine zentrale Rolle ein. Sie sind für das Erkennen von Mustern und das Generieren von Lösungen verantwortlich und lassen sich in verschiedene Lernkategorien einteilen.

  • überwachtes Lernen
  • unüberwachtes Lernen
  • teilüberwachtes Lernen
  • bestärkendes Lernen
  • aktives Lernen

Während beim überwachten Lernen im Vorfeld Beispielmodelle definiert und spezifiziert werden müssen, um die Informationen passend den Modellgruppen der Algorithmen zuzuordnen, werden die Modellgruppen beim unüberwachten Lernen automatisiert aufgrund eigenständig erkannter Muster gebildet.

Teilüberwachtes Lernen stellt eine Mischung aus beiden Methoden dar. Das bestärkende Lernen basiert auf Belohnungen und Bestrafungen. Dem Algorithmus wird durch diese Interaktion mitgeteilt, wie er auf verschiedene Situationen zu reagieren hat. Diese Lernweise ist dem menschlichen Lernen sehr ähnlich.

eBook „Big Data Security und Artificial Intelligence“

BDI eBookKann mit Hilfe von Künstlicher Intelligenz (KI) oder Artificial Intelligence (AI) und Maschinellem Lernen (ML, Machine Learning) der Engpass an „menschlichen“ Security-Analysten reduziert und die Aufdeckung und Abwehr der IT-Sicherheitsvorfälle weitgehend automatisiert werden? 

eBook herunterladen »

Aktives Lernen schließlich bietet dem Algorithmus die Möglichkeit, für bestimmte Eingangsdaten die gewünschten Ergebnisse zu erfragen. Um die Anzahl von Fragen zu minimieren, erfolgt zuvor eine Auswahl relevanter Fragen mit hoher Ergebnisrelevanz durch den Algorithmus selbst.

Abhängig vom jeweiligen System kann die Datenbasis offline oder online vorliegen und wiederholbar oder nur einmalig für das maschinelle Lernen zur Verfügung stehen. Ein weiteres Unterscheidungsmerkmal des Machine Learnings ist das gleichzeitige Vorhandensein der Ein- und Ausgabe-Paare oder deren zeitlich versetzte Entwicklung. Je nach Art spricht man vom Batch-Lernen oder vom sequenziellen Lernen.

Anwendungsbeispiele für das Machine Learning

Machine Learning hat ein sehr großes Spektrum an Anwendungsmöglichkeiten. Im Internetumfeld kommt maschinelles Lernen beispielsweise für folgende Funktionen zum Einsatz:

  • selbstständiges Erkennen von Spam-Mails und Entwicklung geeigneter Spam-Filter
  • Sprach- und Texterkennung für digitale Assistenten
  • Bestimmung der Relevanz von Webseiten für Suchbegriffe
  • Erkennung und Unterscheidung der Internetaktivität von natürlichen Personen und Bots

Weitere Anwendungsbereiche des maschinellen Lernens sind die Bild- und Gesichtserkennung, automatische Empfehlungsdienste oder die automatische Erkennung von Kreditkartenbetrug.

Big Data als Treiber des maschinellen Lernens

Durch die Entwicklung im Bereich der Big-Data-Technik hat auch das maschinelle Lernen einen enormen Schub erhalten. Da beim Machine Learning große Datenmengen vorhanden sein und effizient bearbeitet werden müssen, bilden Big-Data-Systeme die ideale Basis für diese Art des Lernens. Es lässt sich mithilfe von Big Data sowohl strukturiert als auch unstrukturiert vorliegende Daten schnell und mit relativ geringem Hardwareaufwand analysieren und den Lernalgorithmen zuführen.

Für das maschinelle Lernen kommen verteilte Rechnerstrukturen und besonders schnell arbeitende Datenbanksysteme zum Einsatz. Ebenfalls genutzt werden künstliche neuronale Netze, die nach dem Vorbild des menschlichen Gehirns funktionieren.

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Aktuelle Beiträge zu diesem Thema

MariaDB richtet sich mit Platform X4 auf Cloud Native aus

Analyse inklusive

MariaDB richtet sich mit Platform X4 auf Cloud Native aus

Mit „Platform X4“ will Datenbankanbieter MariaDB Corporation Millionen von Entwicklern eine direkte Nutzung intelligenter Transaktionen ermöglichen, etwa Datenspeicherung nach dem Cloud-Native-Modell, auf die der Zugriff bisher ausschließlich über proprietäre Systeme erfolgen könne, teilt der Anbieter mit. Die Software steht ab heute zum Download bereit. lesen

Informatica erweitert Intelligent Data Platform

Neue Anwendungen vorgestellt

Informatica erweitert Intelligent Data Platform

Mit zahlreichen Updates und neuen Anwendungen baut Informatica seine Intelligent Data Platform weiter aus. Zu den Neuheiten zählen unter anderem der KI-basierte Master-Katalog und der Data Marketplace. lesen

Maschinelles Lernen ohne großen Datensatz ermöglichen

Induktive Programmierung

Maschinelles Lernen ohne großen Datensatz ermöglichen

Die Informatikerin Ute Schmid forscht an der Methode der induktiven Programmierung – einem Ansatz, der es ermöglicht, ein System des maschinellen Lernens ohne großen Datensatz aufzubauen. Vor allem in der Medizin und der Industrie soll die Methode nützlich sein. lesen

Die vier Trends der Künstlichen Intelligenz für 2020

Automatisierung

Die vier Trends der Künstlichen Intelligenz für 2020

Künstliche Intelligenz (KI) ist bereits seit einigen Jahren Hype-Thema in den verschiedensten Branchen. lesen

Smartes Stammdatenmanagement als Beschleuniger des IoT

Datenkonsolidierung

Smartes Stammdatenmanagement als Beschleuniger des IoT

Ein bisher unterschätztes Potenzial birgt die Verknüpfung von Maschinen- und Geschäftspartnerdaten. Bei der Konsolidierung von Daten kann ein Multiple Golden Record bei behilflich sein. lesen

Die Top-Trends rund um Enterprise Analytics

Microstrategy wagt Ausblick für 2020

Die Top-Trends rund um Enterprise Analytics

Der Spezialist für Analytics- und Mobility-Software Microstrategy hat die wichtigsten Enterprise-Analytics-Trends für das Jahr 2020 prognostiziert. Dazu kooperierte das Unternehmen mit namhaften Marktforschern wie zum Beispiel Forrester, IDC, Constellation Research und Ventana Research. lesen

Sechs KI-Trends, die uns im neuen Jahr erwarten

Machine Learning, Chatbots & Co.

Sechs KI-Trends, die uns im neuen Jahr erwarten

Der Anbieter für Kundenbindungs-Software Pegasystems nennt sechs Trends aus dem Berich Künstliche Intelligenz (KI), mit denen Unternehmen im Jahr 2020 rechnen sollten. lesen

Jeder dritte Euro fließt in die Digitalisierung

IT-Trends 2020

Jeder dritte Euro fließt in die Digitalisierung

Neue Technologien wie Künstliche Intelligenz, 3D-Druck oder Blockchain bergen ein großes Potenzial für Unternehmen aller Größen und Branchen. Wie hoch die IT-Budgets 2020 wachsen und wofür Organisationen sie einsetzen, zeigt eine Vorab-Auswertung der Studie zu den IT-Trends von Capgemini. lesen

Die passende Machine Learning IDE finden

Entwicklungsumgebungen und Cloud-Plattformen

Die passende Machine Learning IDE finden

Integrierte Entwicklungsumgebungen, kurz IDEs, bieten Funktionen wie Syntax Highlighting, Code Completion, Debugging-Möglichkeiten, Variableneditoren oder Paketmanagement. Damit Entwickler davon auch im Machine-Learning-Umfeld profitieren, mpssen sie aber zunächst die passende IDE finden. lesen

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de/ (ID: 44588634 / Definitionen)