Definition

Was ist ein Neuronales Netz?

| Autor / Redakteur: Tutanch / Nico Litzel

(Bild: © aga7ta - stock.adobe.com)

Künstliche Neuronale Netze (KNN) sind inspiriert durch das menschliche Gehirn und lassen sich für maschinelles Lernen und die Künstliche Intelligenz einsetzen. Es lassen sich mit diesen Netzen verschiedene Problemstellungen computerbasiert lösen.

Das Künstliche Neuronale Netz (KNN) ist bis zu einem gewissen Grad dem Aufbau des biologischen Gehirns nachempfunden. Es besteht aus einem abstrahierten Modell miteinander verbundener Neuronen, durch deren spezielle Anordnung und Verknüpfung sich Anwendungsprobleme aus verschiedenen Bereichen wie der Statistik, der Technik oder der Wirtschaftswissenschaften computerbasiert lösen lassen. Das Neuronale Netz ist ein Forschungsgegenstand der Neuroinformatik und Teilgebiet der Künstlichen Intelligenz. Neuronale Netze müssen, bevor sie Problemstellungen lösen können, trainiert werden.

Aufbau eines Neuronalen Netzes

Stark vereinfacht kann der Aufbau und die Funktionsweise eines Neuronalen Netzes folgendermaßen beschrieben werden: Das abstrahierte Modell eines Neuronalen Netzes besteht aus Neuronen, auch Units oder Knoten genannt. Sie können Informationen von außen oder von anderen Neuronen aufnehmen und modifiziert an andere Neuronen weiterleiten oder als Endergebnis ausgeben.

Grundsätzlich kann zwischen Input-Neuronen, Hidden-Neuronen und Output-Neuronen unterschieden werden. Die Input-Neuronen nehmen Information in Form von Mustern oder Signalen von der Außenwelt auf. Die Hidden-Neuronen befinden sich zwischen den Input- und den Output-Neuronen und bilden interne Informationsmuster ab. Output-Neuronen geben Informationen und Signale als Ergebnis an die Außenwelt weiter. Die verschiedenen Neuronen sind untereinander über die so genannten Kanten verbunden. Damit kann der Output eines Neurons zum Input des nächsten Neurons werden. Je nach Stärke und Bedeutung der Verbindung hat die Kante eine bestimmte Gewichtung. Je stärker die Gewichtung, desto größeren Einfluss kann ein Neuron über die Verbindung auf ein anderes Neuron ausüben.

Positive und negative Gewichtungen

Es existieren positive und negative Gewichtungen, die erregenden oder hemmenden Einfluss darstellen. Ist die Gewichtung Null, übt ein Neuron über die Verbindung keinen Einfluss auf das andere Neuron aus. Das Wissen und damit die Künstliche Intelligenz eines Neuronalen Netzes ist letztlich in den Verbindungen und deren Gewichtungen gespeichert. Die Anzahl der Neuronen und Neuronenschichten sowie der Verbindungsmöglichkeiten der Neuronen verschiedener Schichten bestimmt die Komplexität (die Tiefe) des Neuronalen Netzes und dessen Fähigkeit, Problemstellungen zu lösen.

Während des Trainings des Neuronalen Netzwerks, also dem Lernen, verändern sich die Gewichtungen der Verbindungen, abhängig von den angewandten Lernregeln und erzielten Ergebnissen. Die Anzahl von Neuronen in einem künstlichen Neuronalen Netz ist theoretisch unbegrenzt. Allerdings steigt mit der Anzahl der Neuronen sowie der vorhandenen Schichten und Verbindungen die benötigte Rechenleistung für das Trainieren und den Betrieb.

Typische Strukturen Neuronaler Netze

Neuronale Netze können eine Vielzahl verschiedener Strukturen besitzen, deren Beschreibung den Rahmen dieser Definition sprengen würde. Prinzipiell ist eine Unterscheidung in Feedforward-Netze und Rekurrente Netze möglich. In Feedforward-Netzen findet der Informationsfluss ausschließlich vorwärtsgerichtet von den Input-Neuronen über die Hidden-Neuronen zu den Output-Neuronen statt. In Rekurrenten Netzen existieren Verbindungen, bei denen Informationen bestimmte Neuronen-Verbindungen des Netzwerks rückwärts und anschließend erneut vorwärts durchlaufen können. Diese Netze werden auch als Feedback-Netze oder rückgekoppelte Neuronale Netze bezeichnet.

Typische Anwendungen für Neuronale Netzwerke

Neuronale Netze kommen in vielen Bereichen zum Einsatz. Sie sind prädestiniert für Anwendungen, bei denen nur geringes systematisches Lösungswissen vorliegt und eine große Menge von teils unpräzisen Eingabeinformationen zu einem konkreten Ergebnis verarbeitet werden müssen. Anwendungsbereiche sind beispielsweise die Spracherkennung oder die Bilderkennung. Neuronale Netze können zudem Simulationen und Prognosen für komplexe Systeme und Zusammenhänge erstellen wie in der Wettervorhersage, der medizinischen Diagnostik oder in Wirtschaftsprozessen. Typische Anwendungsgebiete der Künstlichen Intelligenz und Neuronaler Netze sind:

  • Bilderkennung
  • Spracherkennung
  • Mustererkennung
  • Sprachsynthese
  • Schrifterkennung
  • Steuerung komplexer Prozesse
  • Prognosen für komplexe Systeme
  • Frühwarnsysteme
  • Zeitreihenanalysen
  • maschinenbasiertes Übersetzen
  • Simulationen komplexer Systeme
  • biometrische Systeme
  • Wirtschaftsmodelle
  • und weitere

Training eines Neuronalen Netzwerks

Bevor ein Neuronales Netzwerk für die vorgesehen Problemstellung oder Aufgabe verwendbar ist, muss es zunächst trainiert werden. Anhand von vorgegebenem Lernmaterial und Lernregeln gewichtet das Neuronale Netz die Verbindungen der Neuronen, bis es eine bestimmte „Intelligenz“ entwickelt hat. Die Lernregeln geben vor, wie das Lernmaterial das Neuronale Netz verändert. Grundsätzlich kann zwischen dem überwachten Lernen und dem unüberwachten Lernen unterschieden werden. Beim überwachten Lernen wird ein konkretes Ergebnis für die unterschiedlichen Eingabemöglichkeiten vorgegeben. Anhand des ständigen Vergleichs zwischen Soll- und Ist-Ergebnis lernt das Netz die Neuronen passend zu verknüpfen.

Unbeaufsichtigte Lernen gibt kein Ergebnis vor. Der Lernvorgang basiert alleine auf den Informationen der vielen verschiedenen eingegebenen Muster. Das Neuronale Netz nimmt die Veränderungen nur anhand der Eingabemuster vor. Hierfür existieren verschiedene Lernregeln wie die adaptive Resonanztheorie oder die Hebbsche Lernregel.

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Aktuelle Beiträge zu diesem Thema

Das kann das Deep Learning Framework Torch

Deep Learning

Das kann das Deep Learning Framework Torch

Torch ist ein wissenschaftliches Deep Learning Framework mit beachtlichem Support an Algorithmen für das maschinelle Lernen. Auf Grund der einfachen Skriptsprache Lua und der C/CUDA-Implementierung ist das Open-Source-Paket sehr anwenderfreundlich und sorgt für beschleunigte Prozesse. lesen

Welche Hardware eignet sich zur KI-Beschleunigung?

Künstliche Intelligenz

Welche Hardware eignet sich zur KI-Beschleunigung?

Moderne Hardwarebeschleuniger haben den praktikablen Einsatz von Künstlicher Intelligenz in IT und Industrie in greifbare Nähe gerückt. Doch welche Technologie eignet sich hierfür besser: GPUs, DSPs, programmierbare FPGAs oder eigene, dedizierte Prozessoren? lesen

KI: Aktuelle Projekte, Use Cases und Trends

IoT-Basics

KI: Aktuelle Projekte, Use Cases und Trends

Neben Blockchain und Bitcoin der momentan größte Hype in der Digitalszene heißt Künstliche Intelligenz. Die wirtschaftliche Bedeutung der Technologie ist enorm, die möglichen Auswirkungen auf die Gesellschaft sind es ebenfalls. Der Artikel gibt einen Überblick über aktuelle Projekte und Use Cases. Außerdem stellen wir jüngste KI-Forschungsvorhaben und -erkenntnisse ins Rampenlicht. lesen

Braucht das Marketing neue Methoden durch die DSGVO?

Nachbericht b.telligent BI-Kongress 2018

Braucht das Marketing neue Methoden durch die DSGVO?

Rund 400 Gäste kamen nach München zum BI-Kongress 2018 der auf dieses Thema spezialisierten Beratungsfirma b.telligent. Im Mittelpunkt der Tagung standen die Anwendung von Big Data, Data Science, Cloud-Technologien und IoT sowie die demnächst gültige DSGVO (Datenschutz-Grundverordnung) der EU. lesen

Start-up Mythic entwickelt neuartigen In-Memory-Prozessor

Künstliche Intelligenz

Start-up Mythic entwickelt neuartigen In-Memory-Prozessor

Das US-Start-up Mythic will nächstes Jahr einen neuen Chip ausliefern, der KI-Funktionen hybrid analog und digital direkt im Flash-Speicher berechnet. Diese „Intelligence Processing Unit“ (IPU) soll 50-mal weniger Strom verbrauchen als volldigitale GPUs. lesen

So deckt Predictive Analytics Risiken auf

Kommentar von Rudolf Scheller, FM Global

So deckt Predictive Analytics Risiken auf

Big Data Analytics gehört auch in der Versicherungsbranche zu den heiß diskutierten Themen. Laut einer aktuellen Befragung des IT-Unternehmens Infosys wollen 65 Prozent der Befragungsteilnehmer aus dem Versicherungsbereich in Big-Data-Lösungen investieren, um mit der technischen Entwicklung Schritt zu halten. Fakt ist jedoch auch, dass sich die Anwendungsfälle innerhalb der Branche stark unterscheiden. lesen

Alibaba schluckt chinesische IoT-Prozessor-Firma C-Sky

E-Commerce-Gigant setzt auf das Internet of Things

Alibaba schluckt chinesische IoT-Prozessor-Firma C-Sky

Das auf Embedded-Prozessoren spezialisierte IP-Entwicklungsunternehmen C-Sky Microsystems hat einen neuen Eigner: den E-Commerce-Riesen Alibaba. Beide Firmen haben ihren Hauptsitz im chinesischen Hangzhou – und arbeiten bereits an neuen IoT-Lösungen. lesen

7 spannende Start-ups aus dem Sensorik-Bereich

Markteinblick

7 spannende Start-ups aus dem Sensorik-Bereich

Intelligente Sensoren kommen in der Industrie vermehrt zum Einsatz. Und der Markt wächst weiter – eine Technologie mit Zukunftspotential also. Das sehen auch viele junge Unternehmen: Wir stellen sieben interessante Start-ups aus dem Sensorik-Bereich vor. lesen

IoT-Basics – die technische Basis von Big Data

Data Science

IoT-Basics – die technische Basis von Big Data

Big Data beinhaltet eine Reihe von IT-Techniken wie Cluster Computing und MapReduce sowie mathematisch-statistischer Verfahren (Data Mining, Machine Learning). Der Beitrag gibt einen Überblick über die relevanten Datenbankenkonzepte (Hadoop- und NoSQL-Datenbanken) und Programmiersprachen. lesen

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 45140541 / Definitionen)