Definition

Was ist ein Neuronales Netz?

| Autor / Redakteur: Stefan Luber / Nico Litzel

(Bild: © aga7ta - stock.adobe.com)

Künstliche Neuronale Netze (KNN) sind inspiriert durch das menschliche Gehirn und lassen sich für maschinelles Lernen und die Künstliche Intelligenz einsetzen. Es lassen sich mit diesen Netzen verschiedene Problemstellungen computerbasiert lösen.

Das Künstliche Neuronale Netz (KNN) ist bis zu einem gewissen Grad dem Aufbau des biologischen Gehirns nachempfunden. Es besteht aus einem abstrahierten Modell miteinander verbundener Neuronen, durch deren spezielle Anordnung und Verknüpfung sich Anwendungsprobleme aus verschiedenen Bereichen wie der Statistik, der Technik oder der Wirtschaftswissenschaften computerbasiert lösen lassen. Das Neuronale Netz ist ein Forschungsgegenstand der Neuroinformatik und Teilgebiet der Künstlichen Intelligenz. Neuronale Netze müssen, bevor sie Problemstellungen lösen können, trainiert werden.

Aufbau eines Neuronalen Netzes

Stark vereinfacht kann der Aufbau und die Funktionsweise eines Neuronalen Netzes folgendermaßen beschrieben werden: Das abstrahierte Modell eines Neuronalen Netzes besteht aus Neuronen, auch Units oder Knoten genannt. Sie können Informationen von außen oder von anderen Neuronen aufnehmen und modifiziert an andere Neuronen weiterleiten oder als Endergebnis ausgeben.

Grundsätzlich kann zwischen Input-Neuronen, Hidden-Neuronen und Output-Neuronen unterschieden werden. Die Input-Neuronen nehmen Information in Form von Mustern oder Signalen von der Außenwelt auf. Die Hidden-Neuronen befinden sich zwischen den Input- und den Output-Neuronen und bilden interne Informationsmuster ab. Output-Neuronen geben Informationen und Signale als Ergebnis an die Außenwelt weiter. Die verschiedenen Neuronen sind untereinander über die so genannten Kanten verbunden. Damit kann der Output eines Neurons zum Input des nächsten Neurons werden. Je nach Stärke und Bedeutung der Verbindung hat die Kante eine bestimmte Gewichtung. Je stärker die Gewichtung, desto größeren Einfluss kann ein Neuron über die Verbindung auf ein anderes Neuron ausüben.

Positive und negative Gewichtungen

Es existieren positive und negative Gewichtungen, die erregenden oder hemmenden Einfluss darstellen. Ist die Gewichtung Null, übt ein Neuron über die Verbindung keinen Einfluss auf das andere Neuron aus. Das Wissen und damit die Künstliche Intelligenz eines Neuronalen Netzes ist letztlich in den Verbindungen und deren Gewichtungen gespeichert. Die Anzahl der Neuronen und Neuronenschichten sowie der Verbindungsmöglichkeiten der Neuronen verschiedener Schichten bestimmt die Komplexität (die Tiefe) des Neuronalen Netzes und dessen Fähigkeit, Problemstellungen zu lösen.

Während des Trainings des Neuronalen Netzwerks, also dem Lernen, verändern sich die Gewichtungen der Verbindungen, abhängig von den angewandten Lernregeln und erzielten Ergebnissen. Die Anzahl von Neuronen in einem künstlichen Neuronalen Netz ist theoretisch unbegrenzt. Allerdings steigt mit der Anzahl der Neuronen sowie der vorhandenen Schichten und Verbindungen die benötigte Rechenleistung für das Trainieren und den Betrieb.

Typische Strukturen Neuronaler Netze

Neuronale Netze können eine Vielzahl verschiedener Strukturen besitzen, deren Beschreibung den Rahmen dieser Definition sprengen würde. Prinzipiell ist eine Unterscheidung in Feedforward-Netze und Rekurrente Netze möglich. In Feedforward-Netzen findet der Informationsfluss ausschließlich vorwärtsgerichtet von den Input-Neuronen über die Hidden-Neuronen zu den Output-Neuronen statt. In Rekurrenten Netzen existieren Verbindungen, bei denen Informationen bestimmte Neuronen-Verbindungen des Netzwerks rückwärts und anschließend erneut vorwärts durchlaufen können. Diese Netze werden auch als Feedback-Netze oder rückgekoppelte Neuronale Netze bezeichnet.

Typische Anwendungen für Neuronale Netzwerke

Neuronale Netze kommen in vielen Bereichen zum Einsatz. Sie sind prädestiniert für Anwendungen, bei denen nur geringes systematisches Lösungswissen vorliegt und eine große Menge von teils unpräzisen Eingabeinformationen zu einem konkreten Ergebnis verarbeitet werden müssen. Anwendungsbereiche sind beispielsweise die Spracherkennung oder die Bilderkennung. Neuronale Netze können zudem Simulationen und Prognosen für komplexe Systeme und Zusammenhänge erstellen wie in der Wettervorhersage, der medizinischen Diagnostik oder in Wirtschaftsprozessen. Typische Anwendungsgebiete der Künstlichen Intelligenz und Neuronaler Netze sind:

  • Bilderkennung
  • Spracherkennung
  • Mustererkennung
  • Sprachsynthese
  • Schrifterkennung
  • Steuerung komplexer Prozesse
  • Prognosen für komplexe Systeme
  • Frühwarnsysteme
  • Zeitreihenanalysen
  • maschinenbasiertes Übersetzen
  • Simulationen komplexer Systeme
  • biometrische Systeme
  • Wirtschaftsmodelle
  • und weitere

Training eines Neuronalen Netzwerks

Bevor ein Neuronales Netzwerk für die vorgesehen Problemstellung oder Aufgabe verwendbar ist, muss es zunächst trainiert werden. Anhand von vorgegebenem Lernmaterial und Lernregeln gewichtet das Neuronale Netz die Verbindungen der Neuronen, bis es eine bestimmte „Intelligenz“ entwickelt hat. Die Lernregeln geben vor, wie das Lernmaterial das Neuronale Netz verändert. Grundsätzlich kann zwischen dem überwachten Lernen und dem unüberwachten Lernen unterschieden werden. Beim überwachten Lernen wird ein konkretes Ergebnis für die unterschiedlichen Eingabemöglichkeiten vorgegeben. Anhand des ständigen Vergleichs zwischen Soll- und Ist-Ergebnis lernt das Netz die Neuronen passend zu verknüpfen.

Unbeaufsichtigte Lernen gibt kein Ergebnis vor. Der Lernvorgang basiert alleine auf den Informationen der vielen verschiedenen eingegebenen Muster. Das Neuronale Netz nimmt die Veränderungen nur anhand der Eingabemuster vor. Hierfür existieren verschiedene Lernregeln wie die adaptive Resonanztheorie oder die Hebbsche Lernregel.

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Aktuelle Beiträge zu diesem Thema

Neue Gründergeneration nutzt wissensbasierte Technologien

KI-Start-ups

Neue Gründergeneration nutzt wissensbasierte Technologien

KI (Künstliche Intelligenz) und ML (Maschinelles Lernen) beflügeln nicht nur in den USA eine junge Gründergeneration. Das Gleiche gilt für Deutschland. Viele Ideen zielen darauf, industrielle Prozesse effektiver zu machen. lesen

Automobilhersteller und Osram investieren in KI-Start-up

Autonomes Fahren

Automobilhersteller und Osram investieren in KI-Start-up

Verschiedene Automobilhersteller wie BMW und Toyota sowie Osram investieren insgesamt 25 Mio. US-Dollar in das Start-up Recogni. Dieses entwickelt leistungsstarke und energieeffiziente Prozessoren für Künstliche Intelligenz zum autonomen Fahren. lesen

Die Ethik der Künstlichen Intelligenz

Ethik

Die Ethik der Künstlichen Intelligenz

Der Begriff „Künstliche Intelligenz“ (KI) taucht erstmals 1956 in den USA auf. Was KI heute schon kann, ist faszinierend. Aber ethische Fragen bleiben bislang unterbelichtet. Markus Dohm beschäftigt sich mit den aktuelle Entwicklungen: Seiner Meinung nach ist KI ohne menschliche Intelligenz (noch) nicht möglich. lesen

Mitentwickler der Künstlichen Intelligenz geehrt

KI

Mitentwickler der Künstlichen Intelligenz geehrt

Der Mann, der der Künstlichen Intelligenz zum Denken verhalf, wird ausgezeichnet: Bernhard Schölkopf erhält den Körber-Preis für seine mathematischen Verfahren, die die KI, wie wir sie heute kennen, ermöglichen. lesen

Neuroblade sammelt 27 Mio. US-Dollar für KI-Chip

Beschleunigung von KI-Algorithmen

Neuroblade sammelt 27 Mio. US-Dollar für KI-Chip

Neuroblade entwickelt eine Technologie zur Beschleunigung von KI-Algorithmen durch Nachahmung des menschlichen Gehirns. Der Ansatz soll eine enorme Leistungssteigerung ermöglichen – und gleichzeitig Kosten, Stromverbrauch und Platzbedarf von KI-Lösungen reduzieren. lesen

Was echte KI-Security von Katzenbildern lernen kann

Künstliche Intelligenz im Sicherheitskontext

Was echte KI-Security von Katzenbildern lernen kann

Hacker finden meist schnell einen Weg, neue Technologien zu ihrem Vorteil zu nutzen und KI ist da keine Ausnahme. Um intelligenten Cyberangriffen die Stirn zu bieten, müssen Security-Anbieter schon heute Wege finden, das Potenzial der neuen Technologie tatsächlich auszuschöpfen. Ein möglicher Schlüssel hierzu findet sich an unerwarteter Stelle: in der Bilderkennung. lesen

Maschinelles Lernen direkt auf dem eingebetteten System

Sensornahe KI

Maschinelles Lernen direkt auf dem eingebetteten System

Forscher des Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS haben eine sensornahe Künstliche Intelligenz für Mikrocontroller und eingebettete Systeme entwickelt, die ein voll konfigurierbares künstliches neuronales Netz umfasst. Hierbei steht nicht Big Data im Fokus, sondern Mikrointelligenz – beispielsweise für Handschriften- und Gestenerkennung. lesen

Deep Learning und wie ein Neuronales Netz entscheidet

Künstliche Intelligenz

Deep Learning und wie ein Neuronales Netz entscheidet

Bei Deep Learning ist es kaum nachvollziehbar, warum ein Neuronales Netz bestimmte Entscheidungen trifft. Doch welche Kriterien spielen bei der Entscheidung eine Rolle? lesen

Mediziner erzeugen digitalen Herzklon

Digitaler Zwilling

Mediziner erzeugen digitalen Herzklon

Inmitten der Medizin der Zukunft existiert auch ein Patient der Zukunft – und dieser ist nicht mehr aus Fleisch und Blut, sondern ein individuell angepasstes, virtuelles Computermodell. Das Konzept hinter diesem Modell trägt den Namen „Digitaler Zwilling“ und wird aktuell von der Uniklink Heidelberg, gemeinsam mit Siemens Healthineers, vorangetrieben. lesen

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 45140541 / Definitionen)