Definition

Was ist Deep Learning?

| Autor / Redakteur: Stefan Luber / Nico Litzel

(Bild: © aga7ta - stock.adobe.com)

Deep Learning ist ein Teilbereich des Machine Learnings und nutzt neuronale Netze sowie große Datenmengen. Die Lernmethoden richten sich nach der Funktionsweise des menschlichen Gehirns und resultieren in der Fähigkeit eigener Prognosen oder Entscheidungen.

Beim sogenannten Deep Learning handelt es sich um eine spezielle Methode der Informationsverarbeitung. Deep Learning ist ein Teilbereich des Machine Learnings und nutzt neuronale Netze. Zur Herstellung künstlicher Intelligenz werden Trainingsmethoden genutzt, die große Datenmengen heranziehen und analysieren. Die Funktionsweise ist in vielen Bereichen vom Lernen im menschlichen Gehirn inspiriert. Auf Basis vorhandener Informationen und des neuronalen Netzes kann das System das Erlernte immer wieder mit neuen Inhalten verknüpfen und dadurch erneut lernen. Daraus resultierend ist die Maschine in der Lage, Prognosen oder Entscheidungen zu treffen und diese zu hinterfragen. Entscheidungen werden bestätigt oder in einem neuen Anlauf geändert. In der Regel greift der Mensch beim eigentlichen Lernvorgang nicht mehr ein.

Deep Learning eignet sich für alle Anwendungen besonders gut, bei denen große Datenbestände zur Verfügung stehen, aus denen sich Muster und Modelle ableiten lassen. Als technische Grundlage des Deep Learnings dienen künstliche neuronale Netze, die während des Lernvorgangs immer wieder neu verknüpft werden.

Neuronale Netze – Grundlage für das Deep Learning

Das neuronale Netz ist eine Art künstliches Abstraktionsmodell des menschlichen Gehirns und besteht aus künstlichen Neuronen. Es verfügt über sogenannte Eingangs- und Ausgangsneuronen. Dazwischen befinden sich mehrere Schichten an Zwischenneuronen. Die Eingangsneuronen lassen sich durch Lernen auf verschiedenen Wegen über die Zwischenneuronen mit den Ausgangsneuronen verknüpfen. Je mehr Neuronen und Schichten existieren, desto komplexere Sachverhalte lassen sich abbilden.

Das grundlegende Konzept des Deep Learnings

Deep Learning lehrt Maschinen zu lernen. Die Maschine wird in die Lage versetzt, selbstständig und ohne menschliches Zutun ihre Fähigkeiten zu verbessern. Das erreicht man, indem aus vorhandenen Daten und Informationen Muster extrahiert und klassifiziert werden. Die gewonnenen Erkenntnisse lassen sich wiederum mit Daten korrelieren und in einem weiteren Kontext verknüpfen. Schließlich ist die Maschine fähig, Entscheidungen auf Basis der Verknüpfungen zu treffen.

Durch kontinuierliches Hinterfragen der Entscheidungen erhalten die Informationsverknüpfungen bestimmte Gewichtungen. Bestätigen sich Entscheidungen, erhöht sich deren Gewichtung, werden sie revidiert, verringert sich die Gewichtung. Zwischen der Eingabeschicht und der Ausgabeschicht entstehen immer mehr Stufen an Zwischenschichten und Verknüpfungen. Über den eigentlichen Output entscheidet die Anzahl der Zwischenschichten und deren Verknüpfung.

Abgrenzung des Deep Learnings vom rein maschinellen Lernen

Deep Learning ist zwar ein Teilbereich des Machine Learnings, lässt sich aber dennoch gut vom rein maschinellen Lernen abgrenzen. Der entscheidende Unterschied besteht darin, dass beim maschinellen Lernen der Mensch in die Analyse der Daten und den eigentlichen Entscheidungsprozess eingreift. Beim Deep Learning sorgt der Mensch lediglich dafür, dass die Informationen für das Lernen bereitstehen und die Prozesse dokumentiert sind. Die eigentliche Analyse und das Ableiten von Prognosen oder Entscheidungen überlässt er der Maschine selbst. Der Mensch hat keinen Einfluss auf die Ergebnisse des Lernprozesses. Es lässt sich im Nachhinein nicht mehr vollständig zurückverfolgen, auf Basis welcher genauen Muster eine Maschine eine bestimmte Entscheidung getroffen hat. Zudem werden die Entscheidungen ständig hinterfragt und die Entscheidungsregeln selbstständig optimiert.

Anwendungsbereiche für das Deep Learning

Deep Learning ist überall dort gut geeignet, wo sich große Datenmengen nach Mustern und Modellen untersuchen lassen. Deep Learning kommt daher im Rahmen künstlicher Intelligenz häufig für die Gesichts-, Objekt- oder Spracherkennung zum Einsatz. Bei der Spracherkennung ist es beispielsweise dank des Deep Learnings möglich, dass die Systeme ihren Wortschatz selbstständig mit neuen Wörtern oder Wortwendungen erweitern. Ein bekanntes Beispiel für eine solche Arbeitsweise ist der intelligente Sprachassistent Siri von Apple. Weitere Anwendungsbereiche sind das Übersetzen von gesprochenen Texten, die erweiterte künstliche Intelligenz in Computerspielen, das autonome Fahren oder die Vorhersage des Kundenverhaltens auf Basis von Daten eines CRM-Systems.

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Aktuelle Beiträge zu diesem Thema

So gelingt der Start in die KI ohne zusätzliche Ausgaben

[Gesponsert]

Maschinelles Lernen auf bestehenden Infrastrukturen

So gelingt der Start in die KI ohne zusätzliche Ausgaben

IT-Manager benötigen keine neue Infrastruktur, um das volle Potential der KI auszuschöpfen. Sie können ohne zusätzliche Ausgaben sinnvolle Szenarien aufbauen und testen, gewinnbringend nutzen und bei Bedarf unkompliziert skalieren. lesen

Wie Deep Learning die Bildverarbeitung verändern kann

Künstliche Intelligenz

Wie Deep Learning die Bildverarbeitung verändern kann

Deep Learning, ein Gebiet der Künstlichen Intelligenz, verändert derzeit industrielle Prozesse. Was genau die Technologie zur klassischen Bildverarbeitung beitragen kann, zeigen wir hier. lesen

Potenzial und Grenzen von Deep Learning im Versicherungsunternehmen

Kommentar von Dr. Marco Peisker, Adesso AG

Potenzial und Grenzen von Deep Learning im Versicherungsunternehmen

Versicherer stehen weiterhin einer Vielzahl von Herausforderungen gegenüber. Sinkende Erträge – auch durch die aktuelle Kapitalmarktsituation – sind nur schwer durch Umsatzsteigerungen auf relativ gesättigten Märkten zu substituieren. Technische Fortschritte insbesondere im Bereich der Künstlichen Intelligenz können sich für die daraus resultierenden notwendigen Kostenoptimierungsmaßnahmen durchaus als hilfreich erweisen. lesen

Beaglebone AI bringt Künstliche Intelligenz an die Edge

Linux-Singleboard-Computer

Beaglebone AI bringt Künstliche Intelligenz an die Edge

Der Beaglebone AI setzt auf die CPU AM5729 von TI mit Deep-Learning-Technologie. Der Linux-Singleboard-Computer mit mechanischer und Header-Kompatibilität zum Beaglebone Black eint so Maschinelles Lernen mit der einfachen Nutzung eines Beaglebones. lesen

Google-KI erkennt Hautkrankheiten

Deep-Learning-System für Dermatologie

Google-KI erkennt Hautkrankheiten

Wer eine Hauterkrankung hat, sucht oft zunächst seinen Hausarzt auf. Doch deren Diagnosefähigkeit lässt gegenüber den Experten auf einem Spezialgebiet meist zu wünschen übrig, und der Patient bekommt keine optimale Behandlung. Eine Google-KI soll bei zahlreichen Hauterkrankungen eine Quote wie ein Dermatologe erreichen. lesen

Die erste KI-Applikation von BHGE und C3.ai

BHC3 Reliability

Die erste KI-Applikation von BHGE und C3.ai

Das Joint Venture BakerHughesC3.ai stellt seine erste Softwareanwendung zur Verfügung, die mit künstlicher Intelligenz ausgestattet ist: BHC3 Reliability Sie bietet Frühwarnung bei Anlagenstillständen und hilft dabei, die betriebliche Produktivität zu verbessern. lesen

KI – der richtige Einsatz in der Qualitätssicherung

Qualitätsmanagement mit Künstlicher Intelligenz

KI – der richtige Einsatz in der Qualitätssicherung

Mit Künstlicher Intelligenz (KI) entstehen neue Möglichkeiten für die Bilderkennung. Der Mensch als Individuum kann immer besser simuliert werden, was dazu führt, dass Fehlergenauigkeit und Geschwindigkeit und somit die Qualität in diesem Feld stark gestiegen sind. lesen

Künstliche Intelligenz im Eigenbau

Übersicht KI- und ML-Stacks, Teil 2

Künstliche Intelligenz im Eigenbau

Eine kaum noch überschaubare Vielzahl an KI/ML-Frameworks, -Bibliotheken und -Diensten buhlt um die Gunst innovativer Unternehmen. So wird Big Data zur Goldgrube. lesen

ZVEI lädt zur Fachkonferenz „KI für die Industrie“

Veranstaltung in Frankfurt am Main

ZVEI lädt zur Fachkonferenz „KI für die Industrie“

Im Oktober veranstaltet der Zentralverband Elektrotechnik und Elektronikindustrie e.V. (ZVEI) eine Fachkonferenz zum Thema „KI für die Industrie“. lesen

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de/ (ID: 44659369 / Definitionen)