Definition

Was ist Deep Learning?

| Autor / Redakteur: Stefan Luber / Nico Litzel

(Bild: © aga7ta - stock.adobe.com)

Deep Learning ist ein Teilbereich des Machine Learnings und nutzt neuronale Netze sowie große Datenmengen. Die Lernmethoden richten sich nach der Funktionsweise des menschlichen Gehirns und resultieren in der Fähigkeit eigener Prognosen oder Entscheidungen.

Beim sogenannten Deep Learning handelt es sich um eine spezielle Methode der Informationsverarbeitung. Deep Learning ist ein Teilbereich des Machine Learnings und nutzt neuronale Netze. Zur Herstellung künstlicher Intelligenz werden Trainingsmethoden genutzt, die große Datenmengen heranziehen und analysieren. Die Funktionsweise ist in vielen Bereichen vom Lernen im menschlichen Gehirn inspiriert. Auf Basis vorhandener Informationen und des neuronalen Netzes kann das System das Erlernte immer wieder mit neuen Inhalten verknüpfen und dadurch erneut lernen. Daraus resultierend ist die Maschine in der Lage, Prognosen oder Entscheidungen zu treffen und diese zu hinterfragen. Entscheidungen werden bestätigt oder in einem neuen Anlauf geändert. In der Regel greift der Mensch beim eigentlichen Lernvorgang nicht mehr ein.

Deep Learning eignet sich für alle Anwendungen besonders gut, bei denen große Datenbestände zur Verfügung stehen, aus denen sich Muster und Modelle ableiten lassen. Als technische Grundlage des Deep Learnings dienen künstliche neuronale Netze, die während des Lernvorgangs immer wieder neu verknüpft werden.

Neuronale Netze – Grundlage für das Deep Learning

Das neuronale Netz ist eine Art künstliches Abstraktionsmodell des menschlichen Gehirns und besteht aus künstlichen Neuronen. Es verfügt über sogenannte Eingangs- und Ausgangsneuronen. Dazwischen befinden sich mehrere Schichten an Zwischenneuronen. Die Eingangsneuronen lassen sich durch Lernen auf verschiedenen Wegen über die Zwischenneuronen mit den Ausgangsneuronen verknüpfen. Je mehr Neuronen und Schichten existieren, desto komplexere Sachverhalte lassen sich abbilden.

Das grundlegende Konzept des Deep Learnings

Deep Learning lehrt Maschinen zu lernen. Die Maschine wird in die Lage versetzt, selbstständig und ohne menschliches Zutun ihre Fähigkeiten zu verbessern. Das erreicht man, indem aus vorhandenen Daten und Informationen Muster extrahiert und klassifiziert werden. Die gewonnenen Erkenntnisse lassen sich wiederum mit Daten korrelieren und in einem weiteren Kontext verknüpfen. Schließlich ist die Maschine fähig, Entscheidungen auf Basis der Verknüpfungen zu treffen.

Durch kontinuierliches Hinterfragen der Entscheidungen erhalten die Informationsverknüpfungen bestimmte Gewichtungen. Bestätigen sich Entscheidungen, erhöht sich deren Gewichtung, werden sie revidiert, verringert sich die Gewichtung. Zwischen der Eingabeschicht und der Ausgabeschicht entstehen immer mehr Stufen an Zwischenschichten und Verknüpfungen. Über den eigentlichen Output entscheidet die Anzahl der Zwischenschichten und deren Verknüpfung.

Abgrenzung des Deep Learnings vom rein maschinellen Lernen

Deep Learning ist zwar ein Teilbereich des Machine Learnings, lässt sich aber dennoch gut vom rein maschinellen Lernen abgrenzen. Der entscheidende Unterschied besteht darin, dass beim maschinellen Lernen der Mensch in die Analyse der Daten und den eigentlichen Entscheidungsprozess eingreift. Beim Deep Learning sorgt der Mensch lediglich dafür, dass die Informationen für das Lernen bereitstehen und die Prozesse dokumentiert sind. Die eigentliche Analyse und das Ableiten von Prognosen oder Entscheidungen überlässt er der Maschine selbst. Der Mensch hat keinen Einfluss auf die Ergebnisse des Lernprozesses. Es lässt sich im Nachhinein nicht mehr vollständig zurückverfolgen, auf Basis welcher genauen Muster eine Maschine eine bestimmte Entscheidung getroffen hat. Zudem werden die Entscheidungen ständig hinterfragt und die Entscheidungsregeln selbstständig optimiert.

Anwendungsbereiche für das Deep Learning

Deep Learning ist überall dort gut geeignet, wo sich große Datenmengen nach Mustern und Modellen untersuchen lassen. Deep Learning kommt daher im Rahmen künstlicher Intelligenz häufig für die Gesichts-, Objekt- oder Spracherkennung zum Einsatz. Bei der Spracherkennung ist es beispielsweise dank des Deep Learnings möglich, dass die Systeme ihren Wortschatz selbstständig mit neuen Wörtern oder Wortwendungen erweitern. Ein bekanntes Beispiel für eine solche Arbeitsweise ist der intelligente Sprachassistent Siri von Apple. Weitere Anwendungsbereiche sind das Übersetzen von gesprochenen Texten, die erweiterte künstliche Intelligenz in Computerspielen, das autonome Fahren oder die Vorhersage des Kundenverhaltens auf Basis von Daten eines CRM-Systems.

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Aktuelle Beiträge zu diesem Thema

Maschinelles Lernen direkt auf dem eingebetteten System

Sensornahe KI

Maschinelles Lernen direkt auf dem eingebetteten System

Forscher des Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS haben eine sensornahe Künstliche Intelligenz für Mikrocontroller und eingebettete Systeme entwickelt, die ein voll konfigurierbares künstliches neuronales Netz umfasst. Hierbei steht nicht Big Data im Fokus, sondern Mikrointelligenz – beispielsweise für Handschriften- und Gestenerkennung. lesen

SAS fokussiert sich auf IoT, Cloud-Solutions und KI

Nachbericht SAS Forum 2019 Bonn

SAS fokussiert sich auf IoT, Cloud-Solutions und KI

Auf dem diesjährigen SAS Forum hat der Analytics-Spezialist seine Produkte „SAS Intelligent Decisioning“ und „SAS Analytics for IoT“ vorgestellt sowie „SAS Demand Planning“ angekündigt. Die neue Plattform Viya werde komplett im Kubernetes-Container laufen. Daher wird es künftig neue Preismodelle geben. lesen

Weltweit erster KI-Computer für die Bahnindustrie

KI-Railway-Computer

Weltweit erster KI-Computer für die Bahnindustrie

Der, so Syslogic, „weltweit erste KI Railway Computer“ eignet sich für KI- und Deep-Learning-Anwendungen wie die Unterstützung von teilautonomem Fahren, Predictive Maintenance oder Condition Based Monitoring. lesen

IT-basierte Automation in Geschäftsprozessen

Von grundlegender Automatisierung bis hin zu KI

IT-basierte Automation in Geschäftsprozessen

Von der Robotik-Prozessautomatisierung über die algorithmische Automatisierung bis hin zu Künstlicher Intelligenz: Die IT-basierte Automation von Geschäftsprozessen außerhalb der Produktion umfasst ein breites Spektrum zunehmend komplexer Technologien, die wir in diesem Beitrag näher beleuchten. lesen

ERP-Anbieter Unit4 beschleunigt auf der Cloud-Spur

Nachbericht Connect Ambassadors 2019 Amsterdam

ERP-Anbieter Unit4 beschleunigt auf der Cloud-Spur

Mit dem Festpreis-Angeboten und einem Cloud-affinen neuen CEO lockt Unit4 Unternehmen aus ihren internen Rechenzentren. Eine digitale Assistentin lässt Manager in natürlicher Sprache mit ihren Daten reden. Die Informationen können dabei auch in SAP HANA und SAP BW liegen. lesen

Wissen wir noch, was sie tun?

Die Intelligenz der Maschinen

Wissen wir noch, was sie tun?

Mithilfe Künstlicher Intelligenz (KI) treffen Maschinen bereits heute eigene Entscheidungen, die sogar viele Fachleute nicht mehr durchschauen können. Solche KI-Entscheidungen beeinflussen immer stärker auch das menschliche Leben. Droht ein Kontrollverlust? Sind Regeln ein Ausweg? Oder sind diese Bedenken einfach nur übertrieben lesen

So verbessert KI Entscheidungen in der Versicherungsbranche

Kommentar von Prashanth D, Infosys

So verbessert KI Entscheidungen in der Versicherungsbranche

Underwriting ist ein grundlegender Prozess in allen Bereichen der Versicherungsbranche. Dennoch ist dieser Prozess heutzutage arbeitsaufwendig, langsam und produziert inkonsistente Resultate. Oftmals müssen diese Prozesse noch manuell unterbrochen und unterstützt werden. Die Abwägung von Risiken und die Entscheidungsfindung wird dabei von Menschen durchgeführt – aus diesem Grund können Ergebnisse oftmals inkonsistent ausfallen. lesen

Tools für Business Intelligence

E-Book von BigData-Insider

Tools für Business Intelligence

Der Wettbewerb in der Wirtschaft ist scharf und wird in der global vernetzten Wirtschaft zunehmend härter. Führungskräfte und Sachbearbeiter wollen schneller und genauer erfahren, wie leistungsfähig die operativen Systeme des eigenen Unternehmens sind und wie sie sich im wirtschaftlichen Umfeld noch besser durchsetzen können. Zudem wollen sie zusätzliche Geschäftsfelder erschließen und neue Businessmodelle entwickeln. lesen

Cubeware forscht zum Thema Business Intelligence

Lab in München eröffnet

Cubeware forscht zum Thema Business Intelligence

In München startet die BI-Forschung im Cubeware C-Lab. Zum Auftakt machen sich drei internationale Data Scientists ans Werk und befassen sich vor allem mit praxisrelevanten BI-Themen und KI-Verfahren. lesen

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 44659369 / Definitionen)