Predictive Maintenance in der Automobilbranche

Big Data als Schlüssel für die vorausschauende Wartung

| Autor / Redakteur: Alexander Thamm / Nico Litzel

Mithilfe von Predictive Maintenance konnte ein Automobilhersteller Kosten in Millionenhöhe einsparen. Aufgrund von Vorhersagemodellen wurden im Rahmen des nächsten Werkstattbesuches frühzeitig fehlerhafte Teile ausgetauscht. So konnte der Hersteller 75 Prozent aller betroffenen Fahrzeuge identifizieren und seine Gewährleistungskosten um über 50 Prozent senken.
Mithilfe von Predictive Maintenance konnte ein Automobilhersteller Kosten in Millionenhöhe einsparen. Aufgrund von Vorhersagemodellen wurden im Rahmen des nächsten Werkstattbesuches frühzeitig fehlerhafte Teile ausgetauscht. So konnte der Hersteller 75 Prozent aller betroffenen Fahrzeuge identifizieren und seine Gewährleistungskosten um über 50 Prozent senken. (Bild: Alexander Thamm GmbH)

Predictive Maintenance wird oft mit dem Blick in die Glaskugel verglichen, dabei basieren die Vorhersagen für drohende Ausfälle auf anspruchsvollen Analysen und festgelegten Algorithmen. Mit einer hochwertigen Datenbasis, den richtigen Messungsgrundlagen und Herangehensweisen können mit diesem Modell Ausfallzeiten vorhergesagt, Schäden verhindert, Gewährleistungs- und Wartungskosten gesenkt sowie die Kundenbindung gestärkt werden.

Predictive Maintenance ist und wird für Branchen, bei denen Maschinen zum Einsatz kommen, vor allem in Zukunft unumgänglich sein – insbesondere in der Automobilbranche findet dieser Ansatz bereits großen Anklang.

Der harte Kampf der Automobilbranche

Gerade die Automobilbranche hat immer wieder mit Rückschlägen und Imageverlusten zu kämpfen – Rückrufaktionen aufgrund fehlerhafter Fahrzeugteile und der Abgasskandal sind nur zwei Beispiele. Erst vor kurzem musste Toyota wieder Modelle zurückrufen, bei denen es zu Rissen in einem Aktivkohlefilter im Tank und Airbag-Problemen gekommen war. Insgesamt muss der japanische Autohersteller weltweit 3,4 Millionen Autos in die Werkstatt bitten. Toyota ist dabei kein Einzelfall – neben hohen Kosten für Wartung und Gewährleistung, leidet dadurch besonders die Beziehung zum Kunden.

Doch wie lässt sich eine solche Fehlerquelle ermitteln, verhindern oder gar vorhersehen? Die Antwort: mit Daten. Die voranschreitende Digitalisierung und neue Möglichkeiten, die durch das Internet of Things aufkommen, machen auch vor der Automobilbranche nicht Halt, Connected Cars sind auf dem Vormarsch. Nicht nur Kunden profitieren von der zunehmenden Vernetzung der Fahrzeuge, z. B. durch rechtzeitige Wartungsinformationen oder standortbasierte Empfehlungen, sondern auch Hersteller: Sie bekommen ein tieferes Verständnis für Technologien, können ihre Produktentwicklung vorantreiben, die Kosten für Garantie und Gewährleistung senken und den Wert hinter den Daten besser nutzen.

In den (Echtzeit-)Fahrzeugdaten stecken wertvolle Informationen, die es zu sammeln und analysieren gilt, denn dadurch können Vorhersagen über Ausfälle getroffen und Fehler vorhergesehen werden. Kombiniert man diese Daten mit der Expertise der Komponentenentwickler, werden mittels Advanced Analytics neue Ansätze der Qualitätssicherung – und Predictive Maintenance – möglich.

Datenanalyse als Basis für Predictive Maintenance

Um mögliche Fehlerquellen identifizieren bzw. vorhersagen zu können, werden Muster definiert, um ein anfälliges Fahrzeug zuverlässig von einem „gesunden“ unterscheiden zu können. Unterscheidungs- beziehungsweise Hinweisquellen sind beispielsweise Informationen über die Länge der zurückgelegten Strecken, die Häufigkeit der Fahrzeugnutzung, die Durchschnittsgeschwindigkeit oder auch Witterungsverhältnisse.

Im nächsten Schritt werden die Daten für diese Parameter erhoben. Das erfolgt üblicherweise über ein Telematikmodul im Fahrzeug. Bei älteren Generationen ohne Telematik können die Informationen durch eine Fahrzeugauslesung in der Werkstatt gewonnen werden. Diese Daten kann der Hersteller sowohl bei intakten als auch defekten Fahrzeugmodellen ermitteln, um anschließend eine aussagekräftige Analyse durchführen zu können. Denn nur durch diese Gegenüberstellung läuft der Hersteller nicht Gefahr, ein generelles Problem der Baureihe, das sowohl bei kranken als auch bei gesunden Fahrzeugen auftritt, als eine Anomalie anzusehen. Die Diskrepanzen zwischen beiden Fahrzeugtypen (krank und gesund) werden in einem Predictive-Analytics-Modell genau betrachtet und identifiziert.

Die präventive Wartung in der Praxis

Das Beispiel eines von der Alexander Thamm GmbH betreuten Premiumautomobilherstellers zeigt, wie schwerwiegend Schäden innerhalb des Gewährleistungszeitraums sein können. In diesem konkreten Fall drohten an einer Reihe von Fahrzeugen kapitale Motorschäden aufgrund eines fehlerhaften Bauteils. Die potenziellen Reparaturkosten pro Fahrzeug hätten sich auf einen mittleren vierstelligen Betrag belaufen.

Der Automobilhersteller hatte nun zwei Möglichkeiten: Im Rahmen eines Rückrufs entweder bei allen betroffenen Fahrzeugen die notwendigen Teile wechseln oder einzeln prüfen, ob ein Wechsel nötig ist. Oder keine Maßnahmen treffen und die aufgetretenen Schäden erst dann beheben, wenn sie bereits passiert sind. Im ersten Fall lägen die Kosten pro Fahrzeug im oberen zweistelligen Bereich. Insgesamt würde die umfassende technische Überprüfung aller Autos Kosten in Millionenhöhe verursachen und die öffentliche Rückrufaktion für einen Imageschaden sorgen.

Die zweite Option würde zu Kosten im vierstelligen Bereich pro Motorschaden führen. Außerdem müsste der Hersteller mit einer hohen Kundenunzufriedenheit und einem nicht einschätzbaren Sicherheitsrisiko rechnen.

Um die Kosten sowie den Imageverlust möglichst gering zu halten, musste eine Lösung entwickelt werden, mit der die vom Motorschaden betroffenen Fahrzeuge eindeutig von den „gesunden“ unterschieden werden konnten. Einen ersten Anhaltspunkt boten Indikatoren wie der Kilometerstand, der Verschleiß und die Durchschnittsgeschwindigkeit, die im Zusammenspiel zu einem Schaden führen können.

Auch hier wurden betroffene mit nicht betroffenen Fahrzeugen verglichen. Durch die Implementierung des Algorithmus konnten die Data Scientists der Alexander Thamm GmbH zum einen verhindern, dass „gesunde“ Modelle repariert wurden. Zum anderen ließen sich fehlerhafte Teile aufgrund von Vorhersagemodellen im Rahmen des nächsten Werkstattbesuches frühzeitig austauschen. Im Ergebnis konnte der Hersteller 75 Prozent aller betroffenen Fahrzeuge identifizieren und seine Gewährleistungskosten um über 50 Prozent senken. Durch die Vermeidung möglicher Pannen wurde zudem verhindert, dass Kunden ihr Vertrauen in das Unternehmen verloren.

Mit Sicherheit in die Zukunft

Der Autor: Alexander Thamm ist CEO der Alexander Thamm GmbH
Der Autor: Alexander Thamm ist CEO der Alexander Thamm GmbH (Bild: Alexander Thamm GmbH)

Die Bedeutung und Verbreitung von Predictive Maintenance in Unternehmen hat in den letzten Jahren stark zugenommen. Die datenbasierten Verfahren und Modelle zur vorausschauenden Wartung und Berechnung von Ausfallwahrscheinlichkeiten schaffen nicht nur in der Automobilbranche, sondern auch in vielen weiteren Branchen einen enormen Mehrwert. Insbesondere dort, wo der Mensch nur selten eingreift, wie bei Windkrafträdern, Flugzeugturbinen oder auch Lackierrobotern in Produktionsanlagen sind mathematische Vorhersagen über die nächste Instandhaltung bzw. einen drohenden Ausfall wichtig.

Mit der Nutzung von Big Data und den Vorhersagemodellen können Unternehmen Kosten in Millionenhöhe verhindern und nicht zuletzt auch die Kundenbeziehung und -zufriedenheit stärken. Laut Statista wird der Umsatz im Bereich Predictive Maintenance bis 2020 auf 133,1 Millionen Euro steigen – aktuell liegt der Umsatz bei ca. 24,2 Millionen Euro. Das unterstreicht die hohe Bedeutung dieses Analytics-Anwendungsfalls.

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 44262370 / Analytics)