Definition

Was ist Python?

| Autor / Redakteur: Stefan Luber / Nico Litzel

(Bild: © aga7ta - stock.adobe.com)

Python ist eine Programmiersprache, die dank ihrer klaren Syntax und einfachen Lesbarkeit leicht zu erlernen ist und sich sehr vielseitig einsetzen lässt. Für die gängigen Betriebssysteme ist Python frei verfügbar. Die üblichen Programmierparadigmen wie die objektorientierte oder funktionale Programmierung werden unterstützt.

Bei Python handelt es sich um eine Programmiersprache mit einer klaren Syntax und guten Lesbarkeit. Sie gilt als leicht zu erlernen und ist in den gängigen Betriebssystemen interpretierbar. Der Name leitet sich von „Monty Python's Flying Circus“ ab. Python unterstützt mehrere Paradigmen der Programmierung wie die funktionale, objektorientierte oder aspektorientierte Programmierung und ist auch als Skriptsprache nutzbar.

Entwickelt wurde Python von Guido van Rossum am Centrum Wiskunde & Informatica in Amsterdam zu Beginn der 1990er-Jahre. Seit Mitte 2018 steht die Programmiersprache in der aktuellen Version 3.7 zur Verfügung. Der Python-Quell-Code ist unter der Python-Software-Foundation-License frei verfügbar. Im Netz existiert eine breite Anhängerschaft und große Community.

Grundzüge der Syntax und zentrale Merkmale der Programmiersprache Python

Python genießt einen Ruf als einfache und saubere Programmiersprache mit klarer Struktur. Ihr Programmcode ist intuitiv nutzbar und gleichzeitig leicht lesbar. Trotz der Einfachheit bietet Python eine gute Skalierbarkeit und ist für komplexe Softwareprojekte einsetzbar. Aufgrund der ausdrucksstarken, minimalistischen Syntax sind Anwendungen mit wenigen Codezeilen und geringer Anfälligkeit für Programmierfehler realisierbar. Um für Einfachheit und Übersichtlichkeit zu sorgen, kommt Python mit sehr wenigen Schlüsselwörtern aus und verwendet Einrückungen als Strukturierungselemente.

Im Gegensatz zu vielen anderen Sprachen sind die verschiedenen Blöcke nicht durch bestimmte Schlüsselwörter oder Klammern markiert, sondern durch das Einrücken der einzelnen Programmierzeilen. Ein weiteres wichtiges Merkmal ist die automatische Speicherverwaltung. Der Speicher für Variablen oder Arrays ist nicht explizit zu definieren und zuzuweisen. Speicherleck-Fehler lassen sich dadurch in der Programmierung drastisch reduzieren. In Python-Programmen ist es aufgrund der dynamischen Typisierung nicht notwendig, Typen von Variablen oder Funktionsargumenten zu definieren. Python besitzt nur wenige syntaktische Konstruktionen. So existieren mit „for“ und „while“ beispielsweise nur zwei Schleifenformen. Die For- und While-Schleifen können im Vergleich zu zahlreichen anderen Programmiersprachen einen Else-Zweig beinhalten. Generelle Verzweigungsmöglichkeiten bestehen über die Befehle if, elif und else.

Da Python eine sogenannte Multiparadigmensprache ist, sind Programmierer nicht an einen bestimmten Programmierstil gebunden. Für die verschiedenen Aufgaben kann der jeweils optimal passende Programmierstil gewählt werden. Python erlaubt es, Python-Programme als einzelne Module in andere Sprachen einzubetten.

Entwicklungsumgebungen für Python

Grundsätzlich ist für Python keine Entwicklungsumgebung notwendig, da Pythoncode nicht kompiliert werden muss und Skripte sich mit beliebigen Texteditoren schreiben lassen. Interpreter sind interaktiv und erlauben mit den Möglichkeiten der Sprache zu experimentieren. Gängige von Programmierern genutzte Editoren wie Emacs oder Vim sind für Python anpassbar. Oft ist gemeinsam mit Python IDLE installiert. IDLE besteht aus einer Shell, einer Textumgebung und Debuggingfunktionen, stellt aber keine vollwertige Entwicklungsumgebung (IDE – Integrated Development Environment) dar. Beispiele für vollwertige Entwicklungsumgebungen sind Eric Python IDE oder PyCharm. Für große IDEs wie NetBeans, Eclipse oder Visual Studio existieren Plug-ins für Python. Grafische Benutzeroberflächen sind mit verschiedenen GUI-Toolkits relativ einfach erstellbar.

Vorteile der Programmiersprache Python

Die Programmiersprache Python bietet eine Vielzahl an Vorteilen. Im Folgenden kurz zusammengefasst die wichtigsten Vorzüge:

  • einfache Syntax
  • einfach zu erlernen aufgrund der geringen Anzahl an Schlüsselwörtern und der klaren Struktur
  • keine Variablendeklaration notwendig
  • umfangreiche Standardbibliothek vorhanden
  • wenig fehleranfällig
  • weniger Codezeilen im Vergleich zu vielen anderen Programmiersprachen
  • einfach zu lesender und zu wartender Code
  • Unterstützung verschiedener Programmierparadigmen
  • gute Erweiterbarkeit dank einer großen Sammlung von Python-Add-on-Paketen
  • gute Skalierbarkeit
  • für komplexe Aufgaben und fast alle Anwendungsprobleme geeignet
  • für die gängigen Betriebssysteme nutzbar
  • frei verfügbar
  • ständige Weiterentwicklung der Programmiersprache und große Community

Einsatzmöglichkeiten von Python

Für die gängigen Betriebssysteme ist Python frei verfügbar. In vielen Linux-Distributionen gehört die Programmiersprache zur Standardausstattung. Auch auf vielen mobilen Betriebssystemen ist Python einsetzbar. Für Webserver steht mit WSGI (Web Server Gateway Interface) eine universelle Schnittstelle zwischen Server und Python zur Verfügung.

Aufgrund des einfachen Einstiegs in die Programmierung mit Python und der Vielzahl verfügbarer wissenschaftlicher Bibliotheken ist die Programmiersprache im Wissenschaftsumfeld weit verbreitet. Ein weiteres wichtiges Einsatzgebiet ist die Forschung und die Programmierung von Anwendungen im Bereich der Künstlichen Intelligenz (KI) und des maschinellen Lernens. Beispielsweise existiert mit TensorFlow eine mächtige Bibliothek für die Realisierung von KI-Anwendungen und das maschinelle Lernen. Gründe für die Beliebtheit der Programmiersprache in diesem Bereich sind die Leistungsfähigkeit und gute Skalierbarkeit von Python. Viele kommerzielle Projekte wie YouTube oder Google basieren ebenfalls in Teilen auf Python.

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Aktuelle Beiträge zu diesem Thema

Die Sportwelt profitiert von intelligenter Analytik

Big-Data-Analysen im Sport

Die Sportwelt profitiert von intelligenter Analytik

Die drei Analytik-Anbieter SAS, Exasol und Amazon Web Services haben den Sport als Wachstumsmarkt entdeckt. Zudem sind Organisationen wie die Deutsche Bundesliga auf Innovationen bei ihren Zuschauerangeboten angewiesen, um konkurrenzfähig zu bleiben. Mit den Lösungen der drei Anbieter reicht das Angebot von der einfachen Sportgrafik bis hin zu KI-basierten Angaben und Vorhersagen, die in Echtzeit angezeigt werden. lesen

Microsoft veröffentlicht Python-SDK v2

Native Python-Erfahrung bei der Arbeit mir Azure IoT

Microsoft veröffentlicht Python-SDK v2

Microsoft hat kürzlich eine neue Version 2.0.1 des Python-SDKs veröffentlicht. Mit dem Versionssprung setzt der Hersteller nicht länger auf einen Wrapper um das C-SDK, vielmehr handelt es sich um ein natives Python-Projekt. lesen

Graph-Datenbank Neo4j wird noch skalierbarer

Neo4j v.4.0

Graph-Datenbank Neo4j wird noch skalierbarer

Neo4j, ein marktführender Anbieter von Graph-Datenbanktools, hat die Version 4.0 seiner Plattform verfügbar gemacht. Zu den Neuerungen gehören unbegrenzte Skalierbarkeit, mandantenfähige Multi-Datenbank-Nutzung, die Integration von Apache Kafka und die besonders für Unternehmen wichtige feingranulare Steuerung von Datensicherheit und Datenschutz. lesen

Azure Synapse Analytics – das SQL Data Warehouse der nächsten Generation

Verknüpfung von Data Warehouses und Big Data Analytics

Azure Synapse Analytics – das SQL Data Warehouse der nächsten Generation

Mit Azure Synapse Analytics bietet Microsoft einen Analysedienst, der die Vorteile von Data Warehouses und Big-Data-Analysen miteinander kombiniert. lesen

Machine Learning Prague 2020 steht an

Hochkarätiges Line-Up

Machine Learning Prague 2020 steht an

Vom 20. bis 22. März findet bereits zum fünften Mal die jährliche Fachkonferenz Machine Learning Prague 2020 in der tschechischen Hauptstadt statt. Die Teilnehmer können sich auf ein interessantes Programm freuen. lesen

Per Algorithmus zum Kaufabschluss

Big Data Analytics in der Versicherungsbranche

Per Algorithmus zum Kaufabschluss

Die SV SparkassenVersicherung und Detecon zeigen, wie die Digitalisierung in der Versicherungsbranche aussehen kann: Kaufwahrscheinlichkeiten lassen sich über Big-Data-Analysen berechnen. lesen

DataOps als Next Level DevOps?

Kommentar von Bastian Wießner, Eoda

DataOps als Next Level DevOps?

Der Begriff DataOps steht für „Data Operations“. Als agiler Ansatz zielt er auf die Art und Weise ab, wie Daten bzw. deren Analysen genutzt, weiterentwickelt, optimiert und zielführend in neue Datenprodukte überführt werden. DataOps ist damit der nächste logische Schritt, der im Bereich Datenanalytik auf den DevOps-Ansatz folgt. lesen

So automatisiert KI die Entwicklung von KI-Modellen

AutoML

So automatisiert KI die Entwicklung von KI-Modellen

Schon jetzt gibt es laut Bitkom nicht genügend Fachkräfte, um den steigenden Bedarf an Datenanalysen zu decken. Automatisierung kann hier der Schlüssel sein, der Data Scientists von wiederholenden und zeitaufwendigen Tätigkeiten befreit. Genau hier setzt die Idee an, Künstliche Intelligenz einzusetzen, um den gesamten Modellierungsprozess zu automatisieren und zu beschleunigen. lesen

Google Cloud Firestore – die serverlose NoSQL-Dokumentendatenbank

Datenbank für das IoT

Google Cloud Firestore – die serverlose NoSQL-Dokumentendatenbank

Mit der NoSQL-Datenbank Firestore bietet Google eine cloudbasierte Datenbank für IoT- oder andere mobile Anwendungen sowie Web-Apps an. lesen

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de/ (ID: 45383261 / Definitionen)