In dem Projekt wurden verschiedene modellbasierte und datenbasierte Anomalie-Erkennungsverfahren untersucht: Distanzbasierte Methoden berechnen die Entfernung potentieller Anomalien zu den nächsten Nachbarn in historischen Datensätzen. Regressionsmodelle und selbstorganisierende Karten werden dagegen verwendet, um Beobachtungen vorherzusagen und die vorhergesagten Werte mit den tatsächlichen Beobachtungen zu vergleichen.
Im Fall der Destillationskolonnen wurde ein datengetriebenes Systemmodell in Form einer selbstorganisierenden Karte erzeugt. Mit einer Watershed Transformation wurden die verschiedenen Prozessphasen oder Betriebszustände des Systems ermittelt (z.B. das Leeren und Füllen der Container). Dafür wurde eine Demonstrationsanlage erstellt, die im Kern aus zwei Containern besteht, zwischen denen Flüssigkeit in Zyklen mit verschiedenen Pumpenleistungen und Ventilöffnungen hin- und hergepumpt wird. Daraus resultierte eine selbstorganisierende Karte, mit der man in der Lage ist, dieses nichtlineare Verhalten abzubilden.
Basierend auf dieser gelernten selbstorganisierenden Karte wurde online das Prozessverhalten diagnostiziert. Eingriffe in das Prozessverhalten zeigen sich eindeutig im Verlauf des Quantisierungsfehlers der selbstorganisierenden Karte und lassen sich über eine Schwellwertentscheidung ermitteln. „Das Konzept wird aktuell auf großen Datensätzen, die sich für industrielle Destillationskolonnen ergeben, evaluiert. Erste Resultate zeigen, dass das Konzept erfolgreich auf Anwendungen aus der industriellen Praxis übertragen werden kann“, so Windmann.
Ausblick
Die Ergebnisse in Bezug auf die Destillationskolonne wurden mit historischen Daten aus der Produktion und einer Pilotanlage bei Bayer getestet. Aktuell arbeitet das Team an der Implementierung im laufenden Betrieb. Weiter soll die Übertragbarkeit auf andere Anwendungen und die Skalierbarkeit auf große Datenmengen noch verstärkt untersucht werden. Eventuell könnte es auch von Interesse sein, andere Datenquellen zu erschließen. So können Übergabedokumente von Schichten interessante Informationen über den Zustand der Anlage beinhalten.
Nicht nur für Destillationskolonnen könnte sich das Assistenzsystem als nützlich erweisen. Für Kraus sind die Erkenntnisse aus dem Projekt für alle chemischen Prozesse, die sich durch ein nichtlineares Verhalten auszeichnen, interessant. Hintergrund ist, dass eine physikalische Modellierung sehr aufwändig ist und einfache datengetriebene Modelle zu ungenau sind.
Anm. d. Red.: Das Projekt wird vom BMBF im Rahmen des Verbundprojektes AGATA gefördert und vom Projektträger im Deutschen Zentrum für Luft- und Raumfahrt betreut.
Dieser Artikel ist ursprünglich bei unserer Partnerpublikation Process erschienen. Verantwortlicher Redakteur: Dr. Jörg Kempf
Aufklappen für Details zu Ihrer Einwilligung
Stand vom 30.10.2020
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel IT-Medien GmbH, Max-Josef-Metzger-Straße 21, 86157 Augsburg, einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://support.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.